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a b s t r a c t

The heat transfer model for a one-dimensional supercooled melt during the final stage of
solidification is considered. The Stefan problem for the determination of the temperature
distribution is solved under the condition that (i) the interface approaches the specimen
surface with a constant velocity V ; (ii) the latent heat of solidification linearly depends on
the interface temperature; (iii) all the physical quantities given at the phase boundary are
presented by linear combinations of the exponential functions of the interface position.
First we find the solution of the corresponding hyperbolic Stefan problem within the
framework of which the heat transfer is described by the telegraph equation. The solution
of the initial parabolic Stefan problem is then found as a result of the limiting transition
V/VH → 0 (VH → ∞), whereVH is the velocity of the propagation of the heat disturbances,
in which the hyperbolic heat model tends to the parabolic one.

Crown Copyright© 2012 Published by Elsevier B.V. All rights reserved.

1. Introduction

The process of rapid solidification is a well established method for the production of metastable solid states of different
nature making it possible to study new mechanisms of crystal growth and produce materials with radically new physical
properties [1].

In rapid solidification experiments very high velocities of the phase interface can be reached. Such conditions occur
during solidification of undercooled melts or recrystallization after pulsed-laser irradiation of a solid surface. When the
interface velocity reaches some critical value the diffusion–temperature field in the bulk of both phases can significantly
deviate from local equilibrium [2,3]. In this case both the diffusion and heat fluxes are no longer defined by the classical
Fick’s and Fourier’s laws relating the diffusion and heat fluxes correspondingly to the gradients of solute concentration and
temperature. The simplest generation of Fick’s and Fourier’s laws taking into account the relaxation to local equilibrium in
the diffusion and the heat field is given by theMaxwell–Cattaneomodel and leads to the hyperbolic transport equations [4].

In the past two decades a great body of studies, devoted to the local nonequilibrium heat and mass transport during
rapid solidification, has been executed [2,3,5–18]. The numerical estimates show that under conditions of experimentally
achievable interface velocities local equilibrium is only disturbed in the diffusion field, while the heat field can be described
in the local-equilibrium approximation within the scope of the conventional parabolic heat conduction model [2,3].

The currently existing analytical models of the directional solidification processes usually consider the initial transient
and the motion of the planar front far from the boundaries of a system [19–21]. The investigation of the final transient
is practically absent. Meanwhile, besides a purely academic problem there exists considerable practical interest as well
because the final study of the solidification process influences the formation of the surface layer of the materials, their
surface physical–chemical characteristics and the distributions of different defects [22–24].
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The final transient of a binary melt solidification has been analytically considered by Smith et al. in the work [25] (also
see Ref. [26, p. 278]). In the local equilibrium approximation the authors have calculated the terminal solute distribution
of a formed solid. However the found distribution has divergence at the surface of the specimen that may be caused,
among other reasons, by neglect of the temperature changes during the interface motion near the surface. Because of the
thermodynamic relationship between the interface temperature and the solute concentration, resulting from the phase
diagram, such changes can lead to further solute redistribution in the bulk of the specimen. In this connection it is of interest
to initially investigate the evolution of the temperature field of the solidifying pure melt during the final transient.

In general, the problem of the determination of the temperature field during solidification of a melt is known as the
Stefan problem. It consists in solving the heat conduction equation for a temperature T of each phase with the boundary
conditions at the moving interface and in the one-dimensional form is written as

ρcp
∂TL,S
∂t

= λ
∂2TL,S
∂x2

, (1)

TL = TS, (2)
qL − qS = QV , (3)

where indexes L and S are respectively related to the liquid and the solid phase, ρ is the density, cp is the specific heat and λ
is the thermal conductivity (for simplicity, all material characteristics are assumed to be constant and identical within the
phases and at the interface). Eq. (2) represents the condition of the continuity of the temperature across the interface and
Eq. (3) defines the condition of a heat balance at the interface, where qL,S = −λ∂TL,S/∂x is the heat flux, Q is the latent heat
of solidification and V is the velocity of the interface. In addition, at the surface of the specimen the boundary conditions
must be given.

From the thermodynamic point of view the velocity V is determined by the undercooling of the interface∆T = Tm − Ti,
where Tm is the equilibrium temperature of solidification and Ti is the interface temperature, V = f (1T ), so that at
1T = 0, V = f (0) = 0. For so-called normal crystal growth it is assumed that

V = µ1T (4)

where µ is the kinetic coefficient characterizing atomic attachment kinetics at the interface [19]. When the undercooling
of the interface 1T is large enough, the relationship (4) can no longer hold. This takes place when the melt is initially
supercooled. In a number of experiments with puremetals, as well as bymeans of molecular-dynamic simulation [27–30] it
has been shown that at the beginning the growth velocity increases with increasing undercooling1T reaching a maximum
value and then above some critical undercooling1T ∗, V is practically kept constant in some region1T (also see Ref. [19, p.
18]). In what follows we shall presume that the function V = f (1T ) has such properties.

When the undercooling is large enough the amount of latent heat released on the solidification front may prove to be
deficient to heat the interface to the temperature Tm. In this case the undercooling at the interface will be different from
zero during thewhole solidification process,1T ≠ 0, and the solid phasewill reach the surface of the specimenwith a finite
velocity, Vf = f (1Tf ) ≠ 0. When the interface moves in the near surface region the undercooling1T , generally speaking,
will change, at the same time also changing the growth velocity V . However, assuming that Vf is high enough, due to high
undercooling [1], and1T changes within the region for which velocity V depends slightly on1T , one can consider that the
interface moves near the surface with approximately constant velocity V equal to Vf . It should be noted that there exists a
substantial distinction from the situation in the initial transient when the interface velocity changes from zero to a steady
state value.

The behavior of the temperature Ti, the heat fluxes qL,S and the latent heat Q at the moving interface essentially affects
the evolution of the thermal field in the bulk of the phases. Giving different models of their behavior at the interface, one
can consider various models of the solidification process. In the present study we consider the exactly solvable model of
solidification within the scope of which any physical quantity F (the temperature, the heat flux, etc.) is given at the interface
as

F(x, t)|t=t(x) = A(F)0 + A(F)1 e−γ1x/2 + A(F)2 e−γ2x/2 · · · , (5)

where t = t(x) determines the path of the interface position and the coefficients A(F)n and the powers of the exponents γn
must be defined from the phase boundary conditions and the boundary condition at the surface of the system. It is worth
noting that an expression of similar type has been obtained for the solute distribution in the work [25].

As regards the latent heat of the solidification it is normally assumed to be constant and is empirically defined for the
equilibrium temperature Tm as Q = Qm = kTm (k = const.) [31, p. 185]. If the undercooling of the interface is high enough,
it is reasonable to define the variable latent heat as Q = kTi = Qm − k1T that will be used in what follows.

Thus for the determination of the temperature field within the scope of the given model we seek the solution of the
one-dimensional heat conduction Eq. (1) with the boundary conditions (2), (3) and (5) when the interface approaches the
surface with a constant velocity V and the latent heat linearly depends on the undercooling1T .

As has been noted above, the temperature field in a rapid solidifying melt can be considered within the scope of the
parabolic model (1)–(3). However to obtain the solution of interest we shall initially consider an auxiliary problem, namely,
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the corresponding Stefan problem for the hyperbolic heat conduction equation (see, for example, Refs. [6,12]). It turns out
that the boundary conditions given at the moving interface are more simply taken into account within the scope of the
hyperbolic model. As is known, the hyperbolic model of heat conduction, based on the telegraph equation, gives the finite
velocity of the propagation of the heat disturbances in matter VH and is reduced to the parabolic model (1) in the limit
VH → ∞ [4]. The idea of the work is that initially the solution of the hyperbolic Stefan problem with arbitrary ratio of
the velocities V/VH < 1 is solved and then the limiting transient, V/VH → 0, to the solution of the parabolic problem is
executed.

The work is organized as follows. In Section 2 the hyperbolic Stefan problem corresponding to the boundary problem
(1)–(3), (5) is considered. The solution of the telegraph equation is found by the Riemannmethod within the scope of which
the boundary conditions given at an arbitrary moving boundary are automatically taken into account. On the basis of this
solution the heat fluxes and the temperature fields both in the liquid phase and in the near interface region of the solid are
determined. The subsequent limiting transition V/VH → 0 and the solution of the parabolic problem are given in Section 3.
The conclusion is presented in Section 4. The Riemann method and its application to the presented problem are contained
in the Appendices.

2. Hyperbolic model

The hyperbolic model of the heat conduction starts from the Maxwell–Cattaneo relaxation equation for the heat flux [4].
In the one-dimensional form this equation for the liquid phase is

qL + τ
∂qL
∂t

= −λ
∂TL
∂x
, (6)

where τ = a/V 2
H is the time of the relaxation of the heat flux to its local equilibrium value defined by the Fourier’s law and

a = λ/ρcp is the thermal diffusivity.
Eq. (6) in combination with the conservation law

ρcp
∂TL
∂t

= −
∂qL
∂x
, (7)

gives rise to the hyperbolic transport equations

τ
∂2TL
∂t2

+
∂TL
∂t

= a
∂2TL
∂x2

(8)

τ
∂2qL
∂t2

+
∂qL
∂t

= a
∂2qL
∂x2

. (9)

The equation of the type (8) or (9) is known as the telegraph equation. At τ → 0 (or VH → ∞) Eqs. (8) and (9) are reduced
to the parabolic heat conduction Eq. (1).

Now let us consider the supercooled pure melt initially occupying the half-space x ≥ 0. The planar front of solidification
forms in the infinitely removed region at t = −∞ and moves in parallel to the specimen surface fixed at x = 0. As has been
noted in the Introduction when the undercooling is large enough the interface will move in the near surface region with the
approximately constant velocity V = Vf along the path x + Vt = 0. In this case the region occupied by the melt in the final
stage of the solidification process is given by the inequality 0 6 x 6 −Vt (t 6 0). Therefore in the plane (x, t) the liquid
phase occupies the region x + Vt 6 0, x > 0, t 6 0. At the interface the condition of the heat balance (3) holds

(qL − qS)|x+Vt=0 = −VQ |x+Vt=0. (10)

Now we consider the heat flux qL in more detail. Introducing dimensionless variables t/τ , x/τVH in Eq. (9), one obtains

∂2q̃L
∂t2

+
∂ q̃L
∂t

=
∂2q̃L
∂x2

, (11)

where the former notations (x, t) have been used for new variables, q̃L = qL/(QmVH) is the dimensionless heat flux. The
boundary condition (10) in the dimensionless form is written as

(q̃L − q̃S)|x+αt=0 = −αQ̃ |x+αt=0, (12)

where q̃S = qS/(QmVH), Q̃ = Q/Qm and α = V/VH is a dimensionless parameter. In addition, we assume that at the surface
the equality should be fulfilled

q̃L(xt)|x=0 = 0 (t 6 0), (13)

expressing the condition of the absence of the heat flux through the surface. Finally, the solution of (11) is sought in the near
surface region at X ≡ x + αt 6 0, x > 0, t 6 0 occupied by the liquid phase while the solid occupies the region X > 0 (see
Fig. A.1(b) in Appendix).
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Nowwe consider the case of α < 1. Suppose that at the moving interface residing in an arbitrary point x near the surface
at the moment t = −x/α the flux q̃L and its time derivative ∂ q̃L/∂t are known

q̃L(xt)|t=−x/α = q0(x)
∂ q̃L(xt)
∂t


t=−x/α

= q1(x), (14)

where the functions q0(x) and q1(x)will be specified further.
If the functions q0(x) and q1(x) are known the solution of Eq. (11) satisfying the conditions (14) in the region X 6 0 at

α < 1 can be found by the Riemann method [32] (for details see Appendix A) and has the form

q̃L(xt) =
1
2


ϕ


−α

x + t
1 − α


exp


X

2(1 − α)


+ ϕ


α

x − t
1 + α


exp


−

X
2(1 + α)



−
1
2
e−t/2

 α(x−t)
1+α

−
α(x+t)
1−α

dx1ψ(x1)e−x1/2α J0


1
2


(x − x1)2 − (t + x1/α)2



+
X
4α

e−t/2
 α(x−t)

1+α

−
α(x+t)
1−α

dx1ϕ(x1)e−x1/2α

J ′0


1
2


(x − x1)2 − (t + x1/α)2



(x − x1)2 − (t + x1/α)2

, (15)

where

ϕ(x) = q0(x), ψ(x) =
1
2
q0(x)−

1
α
q′

0(x)−
1 − α2

α2
q1(x) (16)

and J0(x) is the Bessel function of zero order.
In accordance with what was said in the Introduction all the quantities given at the phase interface are represented by

linear combinations of the exponential functions (5). In particular, let ϕ(x) and ψ(x) be given by the expansions

ϕ(x) = A0 + A1e−γ1x/2 + A2e−γ2x/2 · · · , (17)

ψ(x) = B0 + B1e−γ1x/2 + B2e−γ2x/2 · · · , (18)

where constants γn > 0, An and Bn will be specified in what follows. After the substitution of (17) and (18) in (15) and the
calculation of the integrals (details in Appendix B), we obtain

q̃(xt) =


n>0

e−γnx/2


A(−)n exp


γ
(+)
n X

2(1 − α2)


+ A(+)n exp


γ
(−)
n X

2(1 − α2)


, (19)

where the following notations have been introduced:

γ (±)n = γn + α ±


α2γ 2

n + 2αγn + α2 > 0; (20)

A(±)n =
An

2
± Bn

δn

νn
; (21)

δn =
α

1 + αγn
; νn =


1 −

δ2n

α2
(1 − α2). (22)

Let us determine the parameters γn, An and Bn in such a way as to satisfy the balance condition (12) and the boundary
condition at the sample surface (13).

2.1. The determination of the parameters

Now consider the boundary condition (13). Taking into account that γ0 = 0, δ0 = α, ν0 = α, γ (±)0 = α ± α and using
Eq. (19), we have for arbitrary small t < 0

q̃(x, t)|x=0 = A(−)0 exp
2α2t

2(1 − α2)
+ A(+)0 + A(−)1 exp

γ
(+)
1 αt

2(1 − α2)
+ A(+)1 exp

γ
(−)
1 αt

2(1 − α2)

+ A(−)2 exp
γ
(+)
2 αt

2(1 − α2)
+ A(+)2 exp

γ
(−)
2 αt

2(1 − α2)
+ · · · = 0. (23)



G.L. Buchbinder, V.A. Volkov / Physica A 391 (2012) 5935–5947 5939

Table 1
The parameters of Eq. (19).

n 0 1 2 3 4

γn 0 4α
1−α2

4α(3+α2)
(1−α2)2

8α(3+α2)(1+α2)
(1−α2)3

8α(1+α2)(α4+10α2+5)
(1−α2)4

γ
(+)
n 2α 8α

1−α2
2α(3+α2)2

(1−α2)2
32α(1+α2)2

(1−α2)3
2α(α4+10α2+5)2

(1−α2)4

γ
(−)
n 0 2α 8α

1−α2
2α(3+α2)2

(1−α2)2
32α(1+α2)2

(1−α2)3

If all the powers of the exponentials are different then q̃(0, t) = 0 can be only at An = Bn = 0. However if each exponential
function appears in Eq. (23) at least twice then this can lead to nonzero An and Bn. Bearing in mind this circumstance we
determine γn so that the following equalities hold:

γ (−)n = γ
(+)
n−1 n = 1, 2, 3, . . . , (24)

in which γ (+)n−1 (and respectively γn−1) are considered to be known.1 Taking into account the notation (20) and resolving Eq.
(24) in relation to γn, one obtains

(1 − α2)(γn)12 = γ
(+)
n−1 ±


αγ

(+)
n−1[2(1 − α2)+ αγ

(+)
n−1]. (25)

At n = 1 and γ (+)0 = 2α Eq. (25) gives

γ1 =
4α

1 − α2
.

The second value γ1 = 0 is the extraneous root of Eq. (24) at n = 1. After the determination of γ1 the values γ (±)1 appearing
in (19) can be found from Eq. (20). Along a similar line one can obtain the values γn, γ

(±)
n for n > 1. In Table 1 these values

are given for n ≤ 4. As is seen from the table γn ∼ (1 − α2)−n, γ (+)n ∼ (1 − α2)−nγ
(−)
n ∼ (1 − α2)−n+1. The case of an

arbitrary n is easily proved by induction using (25).
Under condition (24), Eq. (23) holds, if

A(+)0 = A0/2 + B0 = 0

A(−)0 = A0/2 − B0 = A0 (26)

A(+)n = −A(−)n−1 (n > 1).

Finally taking into account the equalities (26), the expression (19) can be rewritten in the form

q̃(xt) =


n>0

A(+)n+1(e
−γn+1x/2 − e−γnx/2) exp


γ
(−)
n+1X

2(1 − α2)


. (27)

2.2. The temperature field

The temperature field in the liquid phase can be found in the same way as the heat flux has been defined. The resulting
expression for the dimensionless temperature T̃L takes the form

T̃L(xt) = a(+)0 +


n>0

{a(−)n e−γnx/2 + a(+)n+1e
−γn+1x/2} exp


γ
(−)
n+1X

2(1 − α2)


, (28)

where T̃L = ρcp(TL − Tm)/Qm. The constants a(±)n can be expressed in terms of the parameters determining T and ∂T/∂t at
the interface by equations of the type (16)–(18) and (21).

Substituting the expressions for the flux (27) and the temperature (28) into the energy consideration law (7) and equating
the coefficients at the linear independent functions, one can express the constants a(±)n in terms of A(+)n appearing in (27).
The corresponding expressions will be given for the case of the parabolic model.

1 The equation γ (+)n = γ
(+)
n−1 either has no the solutions or does not give the new ones.
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2.3. The solid phase

The heat flux qS and the temperature TS in the solid satisfy the equations

∂2q̃S
∂t2

+
∂ q̃S
∂t

=
∂2q̃S
∂x2

;
∂2T̃S
∂t2

+
∂ T̃S
∂t

=
∂2T̃S
∂x2

(29)

where q̃S = qS/(QmVH), T̃S = ρcp(TS − Tm)/Qm.
For the complete determination of the temperature field in the liquid the interface boundary conditions (2) and (12)

depending on the solid temperature and the heat flux must be used. For their determination it will suffice to consider the
solutions of Eq. (29) in the region near the interface defined by the inequalities X > 0, x + t < 0 (see Fig. A.1(c)). The
solutions of Eq. (29) in this region can be obtained in the same way as for the liquid phase. The application of the Riemann
method in the indicated region gives for the heat flux

q̃S(xt) =


n>0

e−γnx/2


Ã(−)n exp


γ
(+)
n X

2(1 − α2)


+ Ã(+)n exp


γ
(−)
n X

2(1 − α2)


, (30)

where γ (±)n are given by the equality (20) and the constants Ã(±)n can be expressed in terms of the parameters determining
the flux q̃S and its time derivative at the interface by the equalities of the type (21).

The expression for the temperature T̃S is analogously written down as

T̃S(xt) =


n>0

e−γnx/2


ã(−)n exp


γ
(+)
n X

2(1 − α2)


+ ã(+)n exp


γ
(−)
n X

2(1 − α2)


. (31)

3. The parabolic model

As has been indicated above the transition to the parabolic model is executed by the limit α = V/VH → 0 (VH → ∞).
Using Table 1 and Eq. (25) it is easy to show by induction for any n that for small α

γn ≃ 2n(n + 1)α α → 0 (α ≠ 0)

γ (−)n ≃ 2n2α (32)

γ (+)n ≃ 2(n + 1)2α.

When the relationships (32) are fulfilled the expressions for the temperature T̃L and the flux q̃L in the liquid phase arewritten
down in the form

T̃L(xt) = a(+)0 +


n>0

A(+)n+1

α(n + 1)
{e−γn+1x/2 + e−γnx/2}eγ

(−)
n+1X/2 (33)

q̃L(xt) =


n>0

A(+)n+1{e
−γn+1x/2 − e−γnx/2}eγ

(−)
n+1X/2. (34)

The constants a(±)n in Eq. (28) for T̃L have been defined in such a way as to satisfy the conservation law (7) (see the end of
Section 2.2).

From expression (33) it is seen that the disturbances of the temperature field ahead of the solidification front propagate
only over distances in the order of l . 2τVH/γ

(−)
1 = a/V (in the dimensional variables). Therefore, if the interface is removed

from the surface at the distance l ∼ a/V , the surface still remains at the initial temperature T0.2 It is supposed, of course,
that the constant interface velocity approximation holds over distances in the order of a/V from the surface. At x = 0 and
V |t| ∼ a/V in the expression (33) one can neglect the sum (|X | = |Vt| ∼ a/V ) and write down for the temperature at the
surface

T̃L|x=0 = ∆ ≈ a(+)0 ,

where∆ = ρcp(T0 − Tm)/Qm < 0 is the initial undercooling of the melt.
Now let us consider the temperature field in the solid phase. The equalities (30) and (31) hold in the region between

the straight lines x + αt = 0 and x + t = 0 (see Fig. A.1(c)), or in the dimensional variables, between the straight lines

2 For example, for Ni a = 12 · 10−6 m2/s V ∼ 20 m/s, a/V ∼ 0.6 µm. [28].
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x + Vt = 0 x + VH t = 0. At VH → ∞ the second line goes to the straight line t = 0, 0 ≤ x < ∞ and the region of interest
to us will be given by the inequality −Vt < x < ∞, spreading over the whole solid phase.

The variable part of the expressions (30) and (31) in the dimensional coordinates (x, t) is determined by the exponents

e(n+1)V [x+(n+1)Vt]/a, e−nV [x−nVt]/a (V/VH ≪ 1).

It is easy to see that at small t the terms containing the first exponent (proportional to Ã(−)n or ã(−)n ) with increasing x will
indefinitely increase. In order to avoid such nonphysical behavior we put Ã(−)n = ã(−)n = 0 and introduce the notations
A(S)n = Ã(+)n . Turning back to the dimensionless coordinates, let us write down the expressions (30) and (31) at small α in
the form

T̃S(xt) = a(S)0 +


n>1

A(S)n

αn
e−γnx/2eγ

(−)
n X/2 (35)

q̃S(xt) =


n>1

A(S)n e−γnx/2eγ
(−)
n X/2, (36)

where the constants ã(+)n have been determined so that the conservation law (7) is obeyed. It is easy to check that the
expressions (33)–(36) satisfy the heat conduction equations

∂TLS
∂t

=
∂2TLS
∂x2

,
∂qLS
∂t

=
∂2qLS
∂x2

and the Fourier’s law is fulfilled, q̃L,S = −∂ T̃L,S/∂x.

3.1. The temperature field

For the determination parameters appearing in Eqs. (33)–(36) we use the condition of continuity of the temperature
across the interface (2). The detailed calculations are given in Appendix C. The final expression for the temperature of the
liquid phase can be represented in the dimensional coordinates (x, t) as

T̃L(x, t) = ∆+
(1 + b∆)
1 − b


n>1

Cn


enV (x+nVt)/a

+ e−nV (x−nVt)/a


, (37)

C1 = 1; Cn = bn−1
n

k=2

1
(2k − 1 − b)

(n ≥ 2);

(0 6 x 6 −Vt, t 6 0);

where b = TQ /Tm and TQ = Qm/ρcp. For metals the dimensionless parameter b varies through the range 0 < b < 1. For
example, for Ni, Tm = 1726K , TQ = Qm/ρcp = 397K and b = TQ /Tm = 0, 23 [10].

Similarly one can write down for the solid phase

T̃S(x, t) =
1 +∆

1 − b
+

1 + b∆
1 − b


n>1

2n + 1
2n + 1 − b

Cn e−nV (x−nVt)/a, (38)

(−Vt 6 x, t 6 0).

It is easily seen that each term in the brace (37) represents the superposition of two heat waves propagating in the
mutually opposing directions with the velocity nV .

3.2. Numerical results

Figs. 1–2 present the temperature profiles obtained from Eqs. (37) and (38) for∆ = −2.5 (supercooling) and b = 0, 23.
The temperature curves for somemoments of time are shown in Fig. 1. The dashed lines are the temperature distributions

in the solid phase, the solid lines give the temperature field in the liquid phase. As is seen from Fig. 1(a) when the interface is
relatively far from the surface (t/t0 = −3, t0 = a/V 2) the temperature of the solid phase is constant, and the temperature
of the liquid phase falls to approximately the initial temperature of the melt T0 (T̃L|x=0 ≈ ∆ = (T0 − Tm)/TQ = −2.5) at the
surface. When the interface moves close enough to the thermally isolated surface (Fig. 1(b)), the released latent heat gives
rise to the gradual heating of both the liquid phase and the near-interface region of the solid.

In Fig. 2 the dependence of the interface temperature on the parameter b is shown. From the figure it is also seen that
the interface appears on the surface (at x = 0) in the supercooled state, |Ti − Tm|/TQ > 1, providing high final velocity of
the solidification processes V = Vf .
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Fig. 1. The temperature profiles for different moments of time. The dashed lines correspond to the temperature distribution in the solid phase, the solid
lines correspond to the liquid phase; t0 = a/V 2 .

Fig. 2. The temperature at the interface depending on the distance to the free surface for different values of the parameter b = TQ /Tm .

4. Conclusion

In the given work we have considered a one-dimensional model of the heat conduction in the supercooled melt during
the final transient. Three main assumptions underlie the model. Firstly, it is supposed that the interface approaches the
system surface with a constant velocity. Some reasons for this assumption are provided by a number of experimental
results and molecular-dynamic simulation [27–30,19] showing that when the undercooling of the melt is large enough
the interface velocity can slightly depend on the temperature. The second supposition assumes that the latent heat of
solidification linearly depends on the interface temperature. Finally, it is supposed that the physical quantities of interest
(the temperature, the heat flux, etc.) given at the interface are presented by linear combinations of exponential functions of
the form (5), the parameters of which are determined as part of the general solution of the problem.

Within the scope of the model the exact solution of the one-dimensional Stefan problem (1)–(3), (5) defining thermal
distribution in the systemwhen the interfacemoves near the surface has been found. To this end, initially, the corresponding
hyperbolic Stefan problem has been considered within the framework of which the heat transfer is described on the basis
of the telegraph equation. The telegraph equation for the heat flux and the temperature in both the liquid phase and the
near interface region of the solid has been resolved by the Riemann method. Further we have used the fact that in the limit
α = V/VH → 0 the hyperbolic heat model is reduced to the parabolic one. Taking into account this circumstance and
executing the limiting transition α → 0 in the expressions for the fluxes (27), (30) and the temperature (28), (31) the
thermal distribution in the sample during the final stage of solidification has been obtained.

In conclusion it should be noted, that the given approach allows us to consider also other models of the solidification
process differing from model (5). It is likely that the interface boundary conditions in the form of the superposition of
exponential functions are the only ones for which the exact solution exists. On the other hand the solution for the heat
flux (15) is written down for arbitrary boundary conditions (arbitrary ϕ and ψ) and opens up the possibility of numerical
simulation.

Appendix A. The Riemann method

Let it be required to find the solution of the linear hyperbolic equation

∂2q̃
∂t2

+
∂ q̃
∂t

=
∂2q̃
∂x2

, (A.1)
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a b c

Fig. A.1. (a) The figure to the Riemann method. (b) The solution of Eq. (11) is sought in the region of the liquid phase x + αt < 0. (c) The solutions of Eqs.
(29) are sought in the region of the solid phase situated between straight lines X = x + αt = 0 and x + t = 0.

satisfying the initial conditions given at the curve Γ : t = g(x) (see Fig. A.1(a))

q̃|t=g(x) = q0(x)
∂ q̃
∂t


t=g(x)

= q1(x).

The substitution q̃ = e−t/2umakes it possible to lead Eq. (A.1) to a simpler form

∂2u
∂x2

−
∂2u
∂t2

+
1
4
u = 0, (A.2)

with the initial conditions

u|t=g(x) = q0(x)eg(x)/2 ≡ ϕ1(x) (A.3)

∂u
∂t


t=g(x)

=


1
2
q0 + q1


eg(x)/2 ≡ ψ1(x). (A.4)

The characteristics of Eq. (A.2) are the straight lines x±t = const. According to the Riemannmethod [32] if the characteristics
go through the point M and intersect with the curve Γ at the points P and Q , then the solution of Eq. (A.2) at the point M
can be represented as

u(M) =
1
2


uP + uQ


−

1
2


PQ
v


∂u
∂x1

dt1 +
∂u
∂t1

dx1


− u


∂v

∂x1
dt1 +

∂v

∂t1
dx1


. (A.5)

The integral in (A.5) is taken along the curve Γ from P to Q and uP and uQ are the values of u, taken at the points P and
Q . The Riemann function v(M,M1) for Eq. (A.3) has the form

v(M,M1) = J0


1
2


(x − x1)2 − (t − t1)2


, (A.6)

where J0(x) is the Bessel function of zero order and ∂u/∂x is calculated along the curve as

∂u
∂x


t=g(x)

= ϕ′

1(x)− ψ1(x)g ′(x). (A.7)

The Riemann method for arbitrary linear hyperbolic equations can be found, for example, in Ref. [32].
Now consider the solution of Eq. (A.3) in the region x > 0, t 6 0, X = x + αt < 0, when the initial data are given at the

straight line t = −x/α (see Fig. A.1(b)). Instead of (A.3) and (A.4) we have

u|t=−x/α = q0(x)e−x/2α (A.8)

∂u
∂t


t=−x/α

=


1
2
q0 + q1


e−x/2α. (A.9)

If pointM has coordinates (x, t), it is easy to show that points P and Q have the abscissas respectively equal to

xP = −
α(x + t)
1 − α

; xQ =
α(x − t)
1 + α

. (A.10)



5944 G.L. Buchbinder, V.A. Volkov / Physica A 391 (2012) 5935–5947

Consider the integral term in Eq. (A.5). Using Eqs. (A.7)–(A.10) and the fact that along the pathway of integration dt1 =

−dx1/α, one has

1
2

 α(x−t)
1+α

−
α(x+t)
1−α

dx1e−x1/2α


vψ(x1)+ ϕ(x1)


1
α

∂v

∂x1
−
∂v

∂t1


t1=−x1/α

, (A.11)

where the following notations are introduced:
ϕ(x) = q0(x),

ψ(x) =
1
2
q0(x)−

1
α
q′

0(x)−
1 − α2

α2
q1(x).

Furthermore using the Riemann function (A.6), it can be shown that


1
α

∂v

∂x1
−
∂v

∂t1


t1=−x1/α

= −
X
2α

J ′0


1
2


(x − x1)2 − (t + x1/α)2



(x − x1)2 − (t + x1/α)2

. (A.12)

Finally, after substitution of integral (A.11) into Eq. (A.5) and using the equality q̃ = e−t/2u, one obtains the solution of the
starting Eq. (A.1), with added conditions (14), in the form represented by (15).

Appendix B. The calculation of the integrals

Substituting Eqs. (17) and (18) into (15) we have

q̃L(x, t) =


n>0

J̃n(x, t), (B.1)

where

J̃n(x, t) = −BnJ (1)n + AnJ (2)n +
An

2


exp


αγn(x + t)+ X

2(1 − α)


+ exp


−
αγn(x − t)+ X

2(1 + α)


(B.2)

and

J (1)n =
1
2
e−t/2

 α(x−t)
1+α

−
α(x+t)
1−α

dx1e−x1/2δn J0


1
2


(x − x1)2 − (t + x1/α)2


; (B.3)

J (2)n =
X
4α

e−t/2
 α(x−t)

1+α

−
α(x+t)
1−α

dx1e−x1/2δn

J ′0


1
2


(x − x1)2 − (t + x1/α)2



(x − x1)2 − (t + x1/α)2

; (B.4)

δn =
α

1 + αγn
. (B.5)

The calculation of J (1)n
Making the substitution in the integral (B.3)

2αX
1 − α2

z =
α(x + t)
1 − α

+ x1,

we have (for convenience the index n is omitted)

J (1) =
αX

1 − α2
exp


X ′

2(1 − α)


J , (B.6)

where the following notations are introduced:

J =

 1

0
e−µz J0


β

z(1 − z)


dz, (B.7)

X ′
= X +


α

δ
− 1


(x + t), (B.8)

µ =
αX

δ(1 − α2)
< 0, β = −

X
√
1 − α2

> 0. (B.9)
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Consider the integral J . Using the definition of the Bessel function

J0


β

z − z2


=

∞
m=0

(−1)m(β/2)2m(z − z2)m

m!0(m + 1)
,

where 0(x) is the Euler gamma-function, one represents the integral (B.7) in the form

J =

∞
m=0

(−1)m(β/2)2m

m!0(m + 1)

 1

0
e−µz(z − z2)mdz. (B.10)

Calculating the latter integral [33], one obtains

J =


π/|µ|

1/2

e−µ
∞
n=0

(−β2/4|µ|)m

m!
Im+1/2


|µ|

2


, (B.11)

where Iν(x) is the modified Bessel function of the first kind. Furthermore, we use the equality [34]

∞
m=0

tm

m!
Im+1/2(z) =


2t
z

+ 1

−1/4

I1/2


z2 + 2tz


|z| − |2t| > 0.

(B.12)

In our case

|z| − |2t| =
δ|X |

2α(1 − α2)
(α2γ 2

+ 2αγ + α2) > 0

and instead of Eq. (B.11) we have

J =


π

ν|µ|
e−µ/2I1/2


ν|µ|

2


, (B.13)

where

ν = ν(δ) =


1 −

δ2

α2
(1 − α2) =

δ

α


α2γ 2 + 2αγ + α2. (B.14)

Substituting the expression (B.13) into Eq. (B.6) and taking into account that I1/2(x) = (2/πx)1/2 sinh(x), we obtain

J (1)n =
δn

νn
exp


X ′

2(1 − α)


exp


−
α(1 − νn)X
2δn(1 − α2)


− exp


−
α(1 + νn)X
2δn(1 − α2)


, (B.15)

where νn = ν(δn). Finally, substituting X ′ from Eq. (B.8) into Eq. (B.15) one has

J (1)n =
δn

νn
e−γnx/2


exp


γ
(+)
n X

2(1 − α2)


− exp


γ
(−)
n X

2(1 − α2)


(B.16)

and

γ (±)n = α + γn ±


α2γ 2

n + 2αγn + α2.

The calculation of J (2)n

Consider the integral J (2)n . After substitution of the variable in Eq. (B.4)

ξ +
X

1 − α2
= x − x1 (B.17)

we have (the index n is omitted)

J (2) = −
X
4α

exp


X ′

2(1 − α)
−

αX
2δ(1 − α2)


−

αX
1−α2

αX
1−α2

dξeξ/2δ
J ′0


1
2


1−α2
α2

 αX
1−α2

2

− ξ 2




1−α2
α2

 αX
1−α2

2

− ξ 2

. (B.18)
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To calculate the integral (B.18) we consider the equality (B.15), having previouslymade the substitution (B.17) into J (1)n . After
reducing common factors, we have


−

αX
1−α2

αX
1−α2

dξeξ/2δ J0


1
2


1 − α2

α2

 αX
1 − α2

2

− ξ 2


= −

4δ
ν

sinh


ανX

2δ(1 − α2)


. (B.19)

Differentiating the latter equation with respect to X , one obtains

X
4α


−

αX
1−α2

αX
1−α2

dξeξ/2δ
J ′0


1
2


1−α2
α2

 αX
1−α2

2

− ξ 2




1−α2
α2

 αX
1−α2

2

− ξ 2

= cosh
αX

2δ(1 − α2)
− cosh

ανX
2δ(1 − α2)

. (B.20)

One multiplies the latter equality by

− exp


X ′

2(1 − α)
−

αX
2δ(1 − α2)


and using Eqs. (B.18), (B.5) and (B.8), one has

J (2)n =
1
2
e−γnx/2


exp

γ
(+)
n X

2(1 − α2)
+ exp

γ
(−)
n X

2(1 − α2)



−
1
2


exp


αγn(x + t)+ X

2(1 − α)


+ exp


−
αγn(x − t)+ X

2(1 + α)


. (B.21)

Finally, substitute Eqs. (B.16) and (B.21) into Eq. (B.2) and as a result we have

J̃n(xt) = e−γnx/2


A(−)n exp


γ
(+)
n X

2(1 − α2)


+ A(+)n exp


γ
(−)
n X

2(1 − α2)


, (B.22)

where

A(±)n =
An

2
± Bn

δn

νn
.

Appendix C. The determination of the parameters of Eqs. (33)–(36)

For the determination parameters entering (33)–(36) we use the condition continuity of the temperature across the
interface, T̃L = T̃S , and the condition of the heat balance (12). For this purpose initially we write down the latent heat of
solidification Q = kTi, with Ti = TL|X=0 = TS |X=0, in dimensionless form as

Q̃ = Q/Qm = 1 + bT̃S |X=0, (C.1)

where b = Qm/ρcpTm.
Nowwe equate the temperatures T̃S and T̃L at the interface and substitute the fluxes (34), (36) at X = 0 into the condition

of the heat balance (12), then taking into account the equalities (26), one obtains

ba(S)0 + A0/α = −1 (C.2)

a(S)0 + A0/α = ∆ (C.3)

A(S)n =
nAn

n − b
(n > 1) (C.4)

A(+)n+1

n + 1
+

A(+)n

n
=

An

n − b
(n > 1). (C.5)

From the last equation of (26) and the equality (21) it follows that

A(+)n − A(+)n+1 = An. (C.6)
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The substitution of this equality into (C.5) gives the recurrent relationship

A(+)n+1 =
b(n + 1)

n(2n + 1 − b)
A(+)n (n > 1),

whence one obtains

A(+)n = −
nbn−1

(3 − b)(5 − b) . . . (2n − 1 − b)
A0 (n > 2), (C.7)

where the equality A(+)1 = −A0 has been used (see the relationships (26)). The remaining parameters A0 and a(S)0 are found
from the solution of the system (C.2) and (C.3) in the form

A0 = −α
1 + b∆
1 − b

, a(S)0 =
1 +∆

1 − b
. (C.8)

Finally, taking into account the equalities (C.4), (C.7) and (C.8), the expressions for the temperature of both the liquid and
solid phase can be presented in the dimensional coordinates (x, t) in the form of Eqs. (37) and (38).
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