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Abstract – The rapid solidification of a binary mixture in the region of the interface velocities V
close to the diffusion speed in the bulk of the liquid phase VD is considered within the framework
of the local nonequilibrium approach. In this high-speed region the derivation of the analytical
expression for the “temperature-velocity” response function representing kinetic phase diagram is
given without using the concept of the equilibrium phase diagram. The modes of movement of
the interface both without and with the drag effect are analyzed. It is shown that the drag effect
can be accompanied by a local interface temperature maximum at V = VD.

Copyright c© 2021 EPLA

Introduction. – Quantitative modeling of the process
of nonequilibrium solidification of metal melts has been
attracting attention for the past few decades and is an
object of scientific interest at the present time [1,2]. This
interest is primarily due to the fact that nonequilibrium
solidification provides the potential opportunity for ob-
taining metastable materials and, in particular, supersat-
urated solid solutions [2].

At low speeds of the solidification front the composition
and properties of the final phase can be predicted based
on representations about local equilibrium of the interface
and usage of the equilibrium phase diagram. However,
at the sufficiently high front speeds, deviations from the
local equilibrium at the interface can become significant.
Rapid solidification experiments [3–7] show that on a fast-
moving phase boundary the processes of segregation are
suppressed, the solute distribution is no longer determined
in accordance with the equilibrium phase diagram and the
solute trapping by the solid phase takes place.

The effect of complete solute trapping arises when the
solidification speed V reaches the value of the solute dif-
fusion speed in the bulk of the liquid phase VD [8]. In
this case, the solute does not have time to diffuse into
the bulk of the liquid and is trapped by the solid phase
at a concentration equal to its initial concentration in the
melt. The new phase is then formed under conditions
of diffusionless solidification with the partition coefficient
k = 1. A number of theoretical models proposed earlier for

describing solute trapping (see, for example, review [1]) ac-
tually assume that V/VD ≪ 1 and predict that complete
solute trapping with k = 1 is only possible asymptoti-
cally for V → ∞, that corresponds to an infinitely large
value of VD. However, available experimental data [4–7]
clearly demonstrate that the transition to complete solute
trapping giving rise to diffusionless solidification occurs
at essentially finite values of V . Theoretically, the same
conclusion follows from the locally nonequilibrium model
(LNM) developed in the works [8–18]. According to LNM,
the solidification speeds observed in modern experiments
can reach or even exceed the diffusion speed VD and, as
a result, the deviation from local equilibrium can be sig-
nificant not only at the interface but in the bulk of the
liquid phase as well. The so-called local nonequilibrium
approach has been successfully applied to numerical sim-
ulation of experimental data over a wide range of solidifi-
cation rates and is consistent with MD modeling of rapid
solidification of a number of binary systems [19–24].

The modeling of the solidification process depends to
a large extent on the boundary conditions realized at
the phase interface and, in particular, on the relationship
between temperature, the interface velocity and the so-
lute concentration (the so-called “temperature-velocity”
response function). The response function together with
the nonequilibrium partition coefficient k(V ) allows one to
find the kinetic phase diagram generalizing the equilibrium
phase diagram to nonequilibrium solidification process.
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Within the frame of LNM derivation an analytical ex-
pression for the response function in the case of a dilute
melt, sharp interface and linear approximation for equilib-
rium solidus and liquidus has been considered in [12,17].
In particular, it has been assumed that at the temperature
at which the interface moves, the solid and liquid phases
can be in equilibrium with each other with the solute
concentrations determined by the equilibrium solidus and
liquidus, i.e., determined on the basis of the equilibrium
phase diagram [25]. This approximation may be applica-
ble if undercooling at the solidification front is relatively
not large. However, at the large undercooling achievable
in modern experiments it may turn out that moving at
high speed the interface has a sufficiently low tempera-
ture at which an alloy in an equilibrium state in the liquid
phase does not exist and usage of the above assumption is
not correct. For example, during the solidification of a Si-
9 at.% As alloy, often used as a test system, the interface
temperature can reach a value of the order T = 1373 K [6],
below which a dilute alloy exists in equilibrium only in the
form of a solid solution [26].

In this paper within the local nonequilibrium approach
we consider the derivation of the “temperature-velocity”
response function without using the concept of equilibrium
phase diagram, i.e., without using equilibrium properties
systems, and without using the assumption about phase
equilibrium at the temperature of the fast-moving inter-
face. The problem is considered in the region of speeds
V close to the critical speed VD at which a transition
from diffusion-controlled growth to diffusionless solidifi-
cation with k = 1 occurs. The idea of considering the
solidification process in this speed region has been previ-
ously proposed to find the boundary interface conditions
and the nonequilibrium partition coefficient for the inter-
face moving at a constant temperature [27]. Here, the
approach developed in [27] is applied to take into account
temperature changes at the interface and to obtain the
response function for large supercooling in the case of a
diluted melt. The response function (nonequilibrium liq-
uidus) is then used to analyze the temperature behavior of
the interface near the transition to diffusionless solidifica-
tion and compare the modes of movement of the interface
both with and without taking into account the drag effect.

The chemical potentials. – Consider a solidifying bi-
nary alloy consisting of two component A (solvent) and B
(solute). Let the molar fractions of the solute on the liq-
uid and the solid sides of the interface, respectively, be
CL and CS . The liquid and solid phases are separated by
a planar interface moving steady state with the velocity
of V . When modeling the response function one usually
proceeds from the kinetic equation relating the velocity V
to the thermodynamic driving force of phase transforma-
tion ∆G

V = V0(1 − e∆G/RT ), (1)

where T is the interface temperature, R is the gas constant
and V0 is the upper limit of the solidification rate [28].

In the model of solidification without solute drag effect,
∆G is represented as (see, for example, [29])

∆G = ∆GDF = CS∆μB + (1 − CS)∆μA, (2)

where ∆GDF is the change of the Gibbs free energy when
one mole of a substance solidifies in the composition CS ,
∆μi = μS

i − μL
i and μLS

i are chemical potentials of the
component i (i = A, B) at the liquid (L) and the solid (S)
sides of the interface. In the model with solute drag, ∆G
is given by

∆G = ∆GC = ∆GDF − ∆GD = CL∆μB + (1 − CL)∆μA,
(3)

where ∆GC is the crystallization free energy and ∆GD =
(CL − CS)(∆μA − ∆μB) is a part of the free energy spent
on changing the composition of the solid phase with CL

on CS when A and B atoms diffuse through the interface.
Using (2) (or (3)) eq. (1) can be written as

CS(L))∆μB + (1 − CS(L))∆μA = RT ln(1 − V/V0). (4)

It should be noted that the driving force of the phase
transformation ∆G at given changes ∆μA, ∆μB is
uniquely defined by eq. (2) (or (3) if the solute drag is
taken into account). The nature of the nonequilibrium
state in the bulk of phases is manifested only through the
chemical potentials μLS

i . If the medium is in a local equi-
librium state μLS

i are functions of the concentration C and
temperature T . However, in the case of rapid motion of
the interface, the local equilibrium in the diffusion field
of the liquid phase may not have time to establish. In
this case the local nonequilibrium approximation is more
appropriate. In a local nonequilibrium state the entropy
of the system S depends on not only the classical vari-
ables C and T but also the diffusion current J , which, like
the concentration and temperature, is considered as an
independent variable, i.e., S = S(C, T, J) [30]. It follows
that in a local nonequilibrium state the chemical potential
μ = −T∂S/∂C is a function of the same variables, that is
μLS

i = μLS
i (C, T, J) [27].

Now let the interface move stationary at a speed V close
to the velocity VD for which the diffusionless solidification
takes place with JL = 0 and the solute concentration in
both phases equals the initial concentration in the melt c0.
Taking into account the above and neglecting diffusion in
the solid phase, one can write down for chemical potentials
in the region V ∼ VD the following expansion [27]:

μL
i (CL, T, JL) = μL

leq, i(CL, T ) + αi
RT

ρVD
JL + · · · , (5)

μS
i (CS , T, JS) = μS

leq, i(CS , T ), (6)

where ρ is the mass density of the medium [27]. The terms
in (5) and (6), independent of JL, represent the local equi-
librium part of the chemical potential μLS

leq, i. As follows

from eq. (5) for VD → ∞, μL
i → μL

leq, i. The coefficient
at JL has been chosen such that αi is a dimensionless pa-
rameter of order one and its sign can be defined for the
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following reasons. According to a well-known equality, for
the entropy of the liquid phase one can write down, using
eq. (5),

S = −
∑

i

Ci

(

∂μL
i

∂T

)

p,J

= Sleq −
RJL

ρVD

∑

i

αiCi,

where p is the pressure. Since in the local equilibrium
state the entropy of the system Sleq is greater than in the
local nonequilibrium one1, then ∆S = S − Sleq < 0. The
latter inequality is automatically executed when αi > 0
(JL > 0).

For states close to diffusionless solidification the local
equilibrium part of the chemical potential can be expanded
into a series in powers of C − c0 and T − T ∗, where T ∗ is
the temperature of the interface moving with a speed VD.
Then, restricting ourselves to the linear approximation,
we write eqs. (5) and (6) in the following form:

μL
i (CL, T, JL) = μ∗L

i +
∂μ∗L

i

∂c0
(CL − c0)

+
∂μ∗L

i

∂T ∗
(T − T ∗) + αi

RT

ρVD
JL, (7)

μS
i (CS , T, JS) = μ∗S

i +
∂μ∗S

i

∂c0
(CS − c0) +

∂μ∗S
i

∂T ∗
(T − T ∗),

(8)

where

μ∗LS
i = μLS

i (CLS = c0, T = T ∗, JLS = 0) = μLS
leq, i(c0, T

∗).
(9)

Further let us consider a dilute solution for which Raoult’s
and Henry’s laws are valid. In this case local equilibrium
chemical potentials can be represented as

μLS
leq, A(C, T ) = μLS

0A (T ) + RT ln(1 − C), (10)

μLS
leq, B(C, T ) = μLS

0B (T ) + RT lnC, (11)

where μ
L(S)
0A(B)(T ) is the chemical potential of the pure com-

ponent A(B) at the temperature T in the liquid (solid)
state. Calculating the derivatives of (10), (11) and substi-
tuting them in (7), (8), one obtains (at JS = 0)

μLS
A = μ∗LS

A −
RT ∗

1 − c0
(CLS − c0)

+ [−S∗LS
0A + R ln(1 − c0)](T − T ∗) + αA

RT ∗

ρVD
JLS, (12)

μLS
B = μ∗LS

B −
RT ∗

c0
(CLS − c0)

+[−S∗LS
0B + R ln c0](T − T ∗) + αB

RT ∗

ρVD
JLS, (13)

1An isolated thermodynamic system, initially being in the local
nonequilibrium state with entropy S, in the process of relaxation
to an equilibrium state passes through an intermediate the local
equilibrium state. Since its entropy can only increase during the
irreversible process, S < Sleq (see also discussion in [31]).

where S∗LS
0i = −∂μ∗

0i/∂T ∗ is the entropy pure compo-
nent i in local equilibrium at temperature T ∗. It follows
from (12), (13) that the local nonequilibrium chemical po-
tentials changes through the interface are

∆μA = ∆μ∗

A + L∗

A(T − T ∗)/T ∗

+RT ∗
CL − CS

1 − c0
− αA

RT ∗

ρVD
JL, (14)

∆μB = ∆μ∗

B + L∗

B(T − T ∗)/T ∗

+RT ∗
CS − CL

c0
− αB

RT ∗

ρVD
JL, (15)

where L∗

i = −T ∗(S∗S
0i − S∗L

0i ) is the latent heat solidifi-
cation of the pure component i at the temperature T ∗

(L∗

i > 0), ∆μ∗

i = μ∗S
i − μ∗L

i = μ∗S
0i − μ∗L

0i = ∆μ∗

0i and
μ∗LS

0i = μLS
0i (T ∗).

The velocity-temperature response function. –

The interface movement without solute drag. Taking
into account eqs. (14), (15), one writes down the equal-
ity (4) for the model without solute drag in the form

(1 − CS)
[

∆μ∗

0A + L∗

A(T − T ∗)/T ∗

+RT ∗
(CL − CS)

1 − c0
− αA

RT ∗

ρVD
JL

]

+CS

[

∆μ∗

0B + L∗

B(T − T ∗)/T ∗ +
RT ∗

c0
(CS − CL)

−αB
RT ∗

ρVD
JL

]

= RT ln(1 − V/V0). (16)

It follows from (16) that at V = VD, CL = CS = c0,
T = T ∗ and JL = 0 there is the equality

(1 − c0)∆μ0A(T ∗) + c0∆μ0B(T ∗) = RT ∗ ln(1 − VD/V0),
(17)

which can be considered as an equation for determining
temperature T ∗ of the interface moving at the speed VD

at the initial concentration of the solute in the melt c0. It
can be shown that for a diluted melt and a small deviation
T ∗−TA, where TA is the melting temperature of the major
component, the solution of this equation coincides with the
interface temperature T ∗ found in the works [12,17].

Taking into account eq. (17) and the boundary condition
JL = (CL − CS)ρV , one can rewrite eq. (16) in the form

(c0 − CS)(∆μ∗

0A − ∆μ∗

0B) + L∗(CS)(T − T ∗)/T ∗

+
RT ∗(CL − CS)(c0 − CS)

c0(1 − c0)

−α(CS)RT ∗(CL − CS)V/VD =

RT ln(1 − V/V0) − RT ∗ ln(1 − VD/V0), (18)

where the following notations have been introduced:

L∗(CS) = (1 − CS)L∗

A + CSL∗

B,

α(CS) = (1 − CS)αA + CSαB.
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In the absence of diffusion in the solid one can put CS = c0

and write eq. (18) in the linear approximation in V − VD

and T − T ∗ as

T − T ∗

T ∗
=

α(1 − k)CL + (VD − V )(V0 − VD)−1

L∗/RT ∗ − ln(1 − VD/V0)
, (19)

where k = CS/CL = c0/CL is the nonequilibrium solute
partition coefficient and L∗, α are taken at CS = c0. In the
derivation of eq. (19) it has been taken into account that
1−k ∼ VD −V at V < VD. The equality (19) is the sought
response function representing the kinetic phase diagram
in the case of the interface movement with a speed close to
VD. At VD/V0 ≪ 1 one can simplify the expression (19)
and get the nonequilibrium liquidus equation in the form

T = T ∗ + α
RT ∗2

L∗
(1 − k)CL +

RT ∗2

L∗

VD − V

V0
. (20)

In the linear approximation in V − VD the solidus and
liquidus lines coincide since in this case (1 − k)CL =
(1 − k)CS/k ≃ (1 − K)CS .

In the region of the speeds V close to VD the parti-
tion coefficient k(V ) can also be expanded into a series
in powers of VD − V . Since for the interface the only di-
mensionless quantity including VD is the ratio VDI/DD,
where VDI is the interfacial diffusion speed, then for di-
mensional reasons the expansion of k(V ) in this region can
be written as

k(V ) =

{

1 − f(VDI/VD)(1 − V/VD) + · · · , V < VD,
1, V ≥ VD,

(21)
where f is some dimensionless function, in the simplest
case one takes f(VDI/VD) = f0VDI/VD and f0 > 0 is di-
mensionless coefficient of order one. It should be noted
that eq. (21) represents the expansion of k(V ) near VD

in the most general form regardless of the details of the
interface kinetics. The different representations of the
velocity-dependent partition coefficient for some models
of interface kinetics, taking into account complete solute
trapping at V ≥ VD, can be found in refs. [15,16]. For ex-
ample, for the partition coefficient from [15] f(VDI/VD) =
2(1− ke)(1 − c0)VDI/VD, where ke is the equilibrium par-
tition coefficient.

Substitution of (21) into (20) gives in the linear approx-
imation in V − VD

∆T = (VD/V0)

×

{

(1 + αc0f0VDIV0/V 2
D)(1 − V/VD), V < VD,

1 − V/VD, V ≥ VD,

(22)

where ∆T = (T −T ∗)L∗/RT ∗2. As can be seen from (22),
at positive α, ∆T > 0 for V/VD < 1 and T decreases
with the growth of V changing the slope at the point VD

(the behavior of T is qualitatively given by the curve 1 in
fig. 1).

Fig. 1: The qualitative behavior of ∆T depending on V/VD; the
curve 1 corresponds to eq. (22) (model without solute drag);
the curve 2 corresponds to eq. (28) (model with solute drag)
at |∆µ∗

0A|V0/10RT ∗VD > 1.

Solute drag effect. In the model with drag effect
one has

CL∆μB + (1 − CL∆μA) = RT ln(1 − V/V0). (23)

Substituting now relations (14) and (15) in eq. (23) and
performing transformations similar to those used in the
derivation of eq. (19), one obtains in the linear approxi-
mation in V − VD

T − T ∗

T ∗
=

(α + ∆μ∗

0/RT ∗)(1 − k)CL+(VD − V )(V0−VD)−1

L∗/RT ∗−ln(1−VD/V0)
, (24)

where ∆μ∗

0 = ∆μ∗

0A − ∆μ∗

0B. At VD/V0 ≪ 1, eq. (24)
yields the equation of the nonequilibrium liquidus in the
form

T = T ∗+
RT ∗2

L∗
(α+∆μ∗

0/RT ∗)(1−k)CL +
RT ∗2

L∗

VD − V

V0
.

(25)
In the linear approximation in V −VD the solidus equation
is also given by eq. (25) (see the note after eq. (20)). At
V ≥ VD, eq. (25) and eq. (20) coincide. To analyze eq. (25)
for V < VD we consider eq. (17) from which it follows that:

∆μ∗

0

RT ∗
=

∆μ∗

0A

c0RT ∗
+

VD

c0V0
. (26)

Taking into account eq. (26) one can rewrite eq. (25) as

∆T =
(

αc0 +
∆μ∗

0A

RT ∗
+ VD/V0

)1 − k

k
+

VD − V

V0
. (27)

Bearing in mind the diluted melt (c0 → 0) and using (21),
we obtain from (27) in the linear approximation in V −VD

58003-p4
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(by neglecting the second-order term c0(V − VD))

∆T =
[

f0
VDI

VD

(∆μ∗

0A

RT ∗
+

VD

V0

)

+
VD

V0

]

(1 − V/VD). (28)

It is seen from (28) that for f0 ≈ 1 the inequality ∆T > 0
holds2 if

|∆μ∗

0A|

RT ∗

V0/VD

1 + VD/VDI
< 1. (29)

Under the condition V0/VD ≫ 1, the expression on the
left-hand side of inequality (29) can be large enough (for
example, for Si-9 at.% As VD/VDI ∼ 1 [2]). Therefore, it
is obvious that the condition (29) will not be automatically
satisfied for all systems. This means that when the speed
of the front increases towards the critical value of VD in
some cases the solute drag effect can be accompanied by
an increase in the interface temperature, ∆T = T −T ∗ < 0
(curve 2 in fig. 1). It is this behavior that was found in
the numerical simulation of the rapid solidification of the
Si-9 at.% As system [20].

Conclusion. – The most important consequence of the
absence of local equilibrium in the bulk of the liquid phase
in the processes of rapid solidification is transition to com-
plete solute trapping at the finite velocity of the solidifi-
cation front V = VD. This circumstance makes it possible
to analyze analytically the details of the solidification pro-
cess in the region of high velocities close to VD. For the
indicated speed range the analytical expression for the
temperature response function representing kinetic phase
diagram and taking into account solute drag effect has
been derived. In contrast to previous works, in the given
approach the equilibrium properties of the alloy based on
the equilibrium phase diagram of the system have not been
used. At high speeds of the solidification front, the inter-
face temperature may be quite low, so that in the equi-
librium state at this temperature the alloy can only exist
in the form of a solid solution and the use of equilibrium
liquidus and solidus loses its meaning.

In the case of a dilute melt, as follows from the analysis
of the response function (28), the solute drag can be
accompanied by an increase of the temperature of the
interface when its velocity approaches to the critical value
of VD. Numerical simulation of high-speed solidification
of the Si-9 at.% As alloy shows also the existence of a
local temperature maximum in the region of large V [20].
Growth of the interface temperature as V approaches
to VD is perhaps some sign of drag effect. However,

2At T = T ∗ < TA, where TA is the melting temperature of
major component, the solid phase is more stable and ∆µ∗

0A = µ∗S
0A −

µ∗L
0A

< 0.

detailed research on this issue requires studying the so-
lidification process on a large number of different binary
systems.
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