5. M. A. Evgrafov, Yu. V. Sidorov, M, V. Fedoryuk, M. I. Shabunin, and K. A. Bezhanov, Problems in
the Theory of Analytic Functions [in Russian], Nauka, Moscow (1972).

6. V. S. Azarin, "On rays of regular growth of an entire function,” Matem. Sh., 79, No. 4, 463~476 (1969).

7. 8. Stoilow, Lecons sur les Principes Topologiques des Fenctions Analytiques, Gauthier-Villars, Paris
(1938).

8. W. K. Hayman, "Questions of regularity connected with the Phragmen—Lindeldf principle,” J. Math.
Pures et Appl., 35, No. 2, 115-126 (1956).

9. N. 8. Landkov, Foundations of Modern Potential Theory [in Russian], Nauka, Moscow (1266},

INVARIANT ORDERS ON THREE-DIMENSIONAL
LIE GROUPS

A. K. Guts UDC 519,46

Aleksandrov has shown [1] that an isotonic (i.e., order-preserving) homeomorphism of a commutative Lie
group onto itself is an isomorphism, provided the order is not quasicylindrical. An example is given in [2] of
a noncommutative Lie group for which an analogous result is valid.

The following questions are of interest in this context:
1) Doesan invariant order exist for any noncommutative Lie group;
2) are the corresponding isotonic homeomorphisms automorphisms;

3) to what extent does the concept of quasicylindrical order correspond to the exceptional case not
covered by a theorem of Aleksandrov's type.

In the present paper we give some partial results concerning only connected, simply connected, three-
dimensional Lie groups, i.e., the universal covering groups of three-dimensional groups.

It turns out that for these groups, the existence of a global invariant order is not such a rare phenom-~
enon, which means that the result of Aleksandrov can be extended even to noncommutative groups. However,
upon doing this, the quasicylindrical orders lose their exceptional character.

Two groups remain unstudied.

1, DEFINITIONS

1.1. Let G, be ann~dimensional Lie group. We assume that each'boint x € Gp is put in correspondence
with a set Py in such a way that:

l) x € Py;
2) if y &= Py, then Py < Py;
3) ifx =y, then Py = Py.

Then it is easy to introduce a partial order on Gy by putting x =y if and only if y e Px. If condition 3)
is not satisfied, then we speak of a pre-order.

1.2. The order is called invariant if for any elements x and y we have
z-P,=P..,.

1.3. A mapping f:Gp — Gy, is called isotonic if it preserves the identity, i.e., f(e) = e, and if for any
x & Gy we have
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1(P) =Py,
that is, x =y implies f) = ).

1.4, Let Land H (L {1 H = {e}) be a one-parameter semigroup and an {n — 1)-dimensiona! subgroup of
the n-dimensional group Gy, respectively. We denote by L(g) (¢ # g) a subset of the semigroup L homeo-
morphic to the unit interval [0, 1] in the real numbers, e and g corresponding to the endpoints 0 and 1, re-
spectively, of [0, 1]. Further, by [a, b] we mean a subset of G, for which there exists h & Gy such that
h:[a,b]=L{g) and h-a=e, h-b=g.

We define a mapping dy (g)g in the following way:

1) d1(g)H is 2 homeomorphism of Gy onto itself;

) dL(g)H maps every coset hH onto a coset h'H by left translation, i.e.,
dugu(hH)=h"-hH,

3) dL(g)H maps every "interval® [a, b] onto another "interval® of the same type,

1.5, A set is said to be a quasicylinder Q[L(g), H] if its image under d1,(g)H coincides with the image
under left translation by some element in Gy, i.e., if there exists t & Gy such that

dreu(Q[L(g), H])=t-Q[L(g), H].
We do not exclude the case that 1.(g) coincides with L, and we denote such a quasicylinder by Q[L, H].

If Ly,..., L, are n distinct one-parameter semigroups in Gy, then their Cartesian product is a quasi-
cylinder Q[Li, Hi], where Hj is an (o — 1)~dimensional subgroup generated by one-parameter subgroups L, ..
Liy, Li#, ..., L}, where L < Lj'.

2. THREE-DIMENSIONAL LIE ALGEBRAS AND LIE GROUPS

Since we do not have a general method for solving the questions that interest us, the three-dimensional
Lie groups are of special interest in that there exist only nine real nonisomorphic types of Lie algebras for
them. This allows us to study each Lie group G, case by case in terms of its dependence on its Lie algebra.

2.1, We list the three dimensional Lie algebras g; (¢f. [3, p. 72]).
The solvable ones are ' »
g0 [Xin] =0@,j=1,2,3);

gll)  [XiXp] = 0, [XpXy] = Xy, [X3X4] = 05

gslll) [X1Xy] = 0, [X;X3] = 0, [XiX3] = Xy3

glV) XXyl = 0, [XpX;5] = Xy + Xy, [X3X5] = Xy

g3V)  [XiXo] = 0, [XpX5] = X, [XKiX3] = X3

g VI) [XiXy] = 0, [XoX5] =aX,, [X1X3] =X @ # 0, 1);
gVID) [Xi1X,] = 0, [X;X5] = —Xy + 04Xy, [XiXs] = X, @ < 4).
The nonsolvable ones are

g, VII) [X(X,] = Xy, [XpX3] = X3, [K1X3] = 2Xy;

g3IX)  [XiXpl = Xy, [XpXsl = Xy, [X5Xy] = X,.

2.2. We are interested only in connected, simply connected Lie groups. For a Lie algebra g there
exists a global connected, simply connected Lie group G; having Lie algebra isomorphic to gy [5]. Moreover,
in the case of a solvable Lie algebra the corresponding group is homeomorphic to the Euclidean space E; and
hence is noncompact [4, p. 432

Since all Lie groups with a given Lie algebra are locally isomorphic [5], ‘the connected, simply connected
Lie group appearing among them is unique up to isomorphism [4, p, 374} This Lie group is the universal
covering group.

The connected, simply connected Lie groups with Lie algebras g;I —g;IXwill be denoted by G3I—G;IX,
respectively.
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2.3. The following assertion is evident: If the group G has an invariant order, and if the group G' is
isomorphic to G, i.e., G = G', then G' also has an invariant order.
3. ORDERS ON THE LIE GROUPS G,;I -~ G3VI AND G,IX
3.1. We say that an order Pg is good if
1) P contains an interior point;
2) (exp)g1 (Pg) contains a ray issuing from zero.
We are interested only in good orders.

3.2. We say that the group G has property £, if it has a good invariaunt order such that any isotonie
homeomorphism of G onto itself is an automorphism.

3.3, THEOREM. The Lie groups G;3l—G;V and G3VI {0 < g < 1) have property . The group G;I¥ does not
not have a good order.

Proof. We represent the group G, as a group of transformations acting simply transitively on some
sufficiently good space M. M will be either the Euclidean space E,, the hyperbolic space JI;, or the sphere S°,

Fix a point xy & M. Then we easily get a homeomorphism ¢ between M and Gg
@
Gamg—g(z)=M. )

If now P is an invariant orderonGs, the family {Py:x & M}, where P} = ¢(Py~igx)) defines an order on M in-
variant with respect to G;, i.e., for any x = M and g & G, we have g{Py) = Pg(x). Conversely, if {Py} is an
order on M invariant with respect to Gy, then {Pg g e G3}, where

Py= o " [Pog)
is an invariant order on Gs.
In view of this, it suffices to study the orders on M invariant with respect to G; {the G;~invariant orders).

a) Gsl. Here M = E; and G;l is a group of translations. That G;I has property & follows from the re-
sults of Aleksandrov [1].

b) GsII. Here M = [, It is convenient to pass to the Poincaré model .ffg of Jg: Jy = {&, y,z) €Ez:z >
0}, where x, y, z are rectilinear Cartesian coordinates. The group Gl consists of the transformations of the
type
gz, ¥, 2)—>(z+o, hzt+y+p. (1+2)z),

where A > =1, a, B are real numbers. The infinitesimal operators are: -

a dJ
Xi=ge Xo=gm Xy=2g+ 25

A Gyll-invariant order is defined by the quasicylinder
P(O, 0.“)={(x7 Y, Z)Ej]g:.r;o, y>(a—1)xv Z>a}a Zo== (07 01 1‘)7

and Py, Py are obtained from one another by parallel translation in case their z coordinates are equal. We
show that an isotonic homeomorphism f (f(x;) = x;) for the above order must have the form

=, y, 2) =(uz, py, z). )
Denote by 1“;0, I‘gio, r§;0, respectively, the faces of the three-faced angle aPX0 which lie in the planes given by
z=1,x=0,y=0, Put l‘é = g(I‘%(O), where g & Gj is such that‘g(XO) = X.

- Iet

1 1 2 2 3 . aTT T
M= U Peeyay o= U Py gy = U F(Ex.y,ﬁ) +(0, v, 0), B >0.
() (v,2) y=(B—1)x

Clearly, T} is the plane {z = 2}, T1%, is the half-plane {x = o, z > 0}, and 3, isthehalf-plane {y = (8- 1)x,
z = B}. Since f is a homeomorphism and H%y has boundary, the image of H%y can only be H%v.yr. Siace for any
Ui)\ there exists H%,Y such that Hix N H%y = @, the image of Hi)\ can only be Hg\,, for any Hza intersects any 'ﬂ%-y.

1t follows from this that f preserves the family of the z coordinaies of the lines and also the coordinate plane
{z =1}. But then f has the form
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Hz y, 2) = (1(=, y), fol, ¥), fs(2)).

We remark that if By, By, B; are distinct and gy, Bz, B3 < 1, then the intersections H1 N HBI H1 N nﬁz)’ H1 n
define three families of parallel hnes on H1 ={z =1}, These are mapped by f into three families of
parallel lines. But then f is affine on Hl, ie.,

f{z, y)=a-z-+b-y, fo(z, y) =caxt-dy
1, p. 12},

Since the lines {x = 0, z =1} and {y = 0, z = 1} go into themselves, we have b=c = 0, Le., f;&, y) =ax
fZ(X$ Y) =dy

The numbers a, d are positive since f(PXO) = PXo'

But f3) =1, Henced=a =p agd f(z) = z. This proves Eq. (2). An isotonic homeomorphism f:.7;— /I,
induces an isotohic homeomorphism f:GglI — G,II defined by (1), Le.,

¢
Fg)— f(g(20)). 3)
The converse is also valid. Let us show that f is an automorphism.

Iet gy, gy € G,ll and

gi(z, y, 2) ="(z+ay, Mz+y+Bi, (1+M)2), g1 2-(a, By (14+h)),
ale, ¥, ) = (ebas, Mzkytbs (1442)2), g (o, B, (14a)).
Then
2081~ £2(81(20) ) = (o + a2, hacts +Pr-tBa, (14M) (1-42)) “)
defines the law of multiplication in the group Gsll.

Further,

f(gng)if(gggl(xo))=(ua1—|—uoc2, whoo 0l +ude, (1441) (1422)), (5)
7 (81)=> 11 (20)) = (eus, b, (1)),
(g2)~> 1(82(20)) = (z, s, (1+0a)).
Multiplying the elements f(g;) and f(g,) by (4) we get
7 (€0) F(g0) (ot pota, whaitudi-Fide, (144) (1), @
Comparing (5) and (6) we conclude that
| F(@)T (&) =7 (g:),
e., fis an automorphism.
This means that G;II has property 5 .
c) G,lII. We take M = J;, where Gl is given in /s by transformations of the type
g: (z, y, 5)—>(z-+a, Ay+5, Az), zo=1(0, 0, 1),
where A, z > 0.
Here, the order is the following:
Poon={(= y, 2)ls:2=20, y==hz, 2224}, 1>0, ()
and Px, Py are equal and parallel for x and y with equal z coordinate, i.e., for z(x) = z ().

Denote by I‘Xo, I‘X0 I‘XO, respectlvely, he faces of the three-faced angle 8Py, which lie in the planes
defined by z =1, x =0, and y = x, Put FX g(I‘XO), where g € Gy is such that gxg) = x.

734



Let

H?ix: U F(lx,y,x), Hé: u

T,
o) gz (B

—

g, = y To e + (0,7, 0), 8>>0.
y=fx

Evidently, T ={z =2}, 13, ={x =0, z > 0}, and H%O ={y = Bx, z = B}. Then we see as in b) that { has
the form
Hx, y, 2) = (az-+by, cz+dy, f3(z)).

Since the lines {x =0, z = 1}, {y =x, z = 1} go into themselves, we have b = 0 and d + ¢ =a. We see again
as in b) that

fa(2) = (zd+-¢) fa.
Further, the ray L={y = 0,z = 1, x = 0} is mapped into the ray L' lying in {z = 1} and starting at the
point x,

But L is a limit of the rays
Ln:H?/n,O ﬂ{Z:l}ﬂ{l’}O} as B—o0c.

Since f is a homeomorphism and x =0} N{y > oh U{x =0,y =0} = ALJ‘O.P(O'G,;{), we have that L' is a limit of
the rays .

Hime N{z2=1} 0 {&>=>0}and f,(/n) <=z 0.

It follows from this that L' = L. But then, ¢ = 0, a =d =yu, l.e., f has the form 2). It is trivial {o check
that  is an automorphism.

The above order is quasicylindrical. So also, e.g., is the order given hy:
Po,o.n={{2, y. 2) =lls:232}, 2320, y=>0}, (8)

and Px and Py are equal and parallel for z(x) = 2(y). This order is preserved by maps of the type f(x. y, z) =
(fi &), £, &), £5(z)), where {; are in general arbitrary functions. These functions may, moreover, be chosen so
that f is not an automorphism [for instance, if £(aB) = f3(a)(B)].

There exists an invariant order on G;III which is not quasicylindrical, namely,

P{a.ﬂ, ;““—:{(.Z, Y, Z') E'ﬁs:}\'QKZ?"{—yz— (Z—}V)zgov 222‘}+(av ﬁ’ O)

_ One might naturally suppose that f is an automorphism also with respect to this order, but this fact is
not necessary for our purposes.

d) G4IV. Put M = J,, with the group given on J; by the transformations
g (x, o > ((I+Ma+Hry+a, (17 g+ (1441)z), 2>—1, 2>0.
The invariant order here is the same as the ons in b),* The rest of the proof is analogous to by,
e) GgV. M= J; with G;V of the form
g:(x, y, z)— (ha+a, hy-+B, Az).

As shown in [2], it has property o£. This group and G4I have been more thoroughly studied than the
others.

f) GgVI (0 < q < 1), M=J;, with GyVI given in 73 by
g:(z, y, 2)~>((1+r)a+a, (1+Arg)y+B, (1+4)z2),
where A > —1, z > 0,
The invariant order with respect to which G;VI has property o is:
Po.on={(z, y, syeldyy=0, z= [ (1+(A—1)qly, 5322}, 1>0,

and Py, Py are equal and parallel for z&) = z {).

*More precigely, P9 4)={y 20, x= (@ —1l)y/a,z = o}, a > 0.



We establish as in ¢) that an isotonic homeomorphism has the form 2). It is trivial to check that f:G3 -
G3 is an automorphism.

g) G3;IX. The Lie algebra of the group G;IX is semisimple and compact. Therefore, G;IX is compact
[4, pp. 446, 483]. But then G4IX =~ SU (2) [4, p. 498, E]. Since (exp)éi(P) contains a ray, it follows that P con-
tains a one-parameter semigroup y(t), t € [0, +=). Let T'(), t € (~=, +=), be a one-parameter subgroup
containing y({t). The closure TE) of T '(t) is an Abelian subgroup of the Lie group G;IX, and is moreover com-
pact and connected. This means that I'(t) is a torus [6]. Since a maximal torus of the group SU2) is one-
dimensional [6], T'(t) is a compact curve. Then we can find a = I'(t;) such thata = e, e =4, and a <e. But this
contradicts the third axiom for an order (cf. Sec. 1). This proves the theorem,

4. CONCLUSIONS

At the beginning of this paper we stated three questions about orders on Lie groups. Now we can answer
them in the following way.

1) Global invariant orders exist on many noncommutative Lie groups,

2) A theorem of the type of Aleksandrov's theorem [1Tholds for the group G;V {2], but for the others, it
cannot be formulated in the same way as was done in [1]. Therefore, we speak only of these groups
as having property £.

3) A basic difficulty is caused by the fact that for the groups G;II—G;IV and G4VI the concept of quasi-
eylindrical order does not lead to the exceptional case as was the situation with Gyl and G4V (1, 2].
This is shown by the existence of quasicylindrical orders on GlIII such as (7) and (8).

4) In studying the groups G;I—G3VI, we see that if they have one-parameter semigroups L, I,, I3 such
that: @) P = Lj X Ly x Ly is a quasicylindrical order; () for any g € L; we have g(Lj x Lg) = L{ x L,
g(Ly x L)) = L} x L}, where L{ is a one-parameter subgroup containing Lj (i = 1, 2, 3); (c) L{ x Ly
is an Abelian subgroup, then an isotonic map P need not necessarily be an automorphism.

Properties (b) and (c) are precisely the ones distinguishing the orders (7), (8). It seems possible that the
exceptional case in Aleksandrov's theorem can in fact be reduced to the existence of 2 quasicylinder with prop-
erties (a), (), and (c). And then it seems entirely possible that any isotonic mapping in the group G,ll might
be an automorphism (for a good order).

We remark in conclusion that one can show using the above method the existence of four-dimensional
Lie groups having property o . For this, one uses the classification of real four~dimensional Lie algebras
[3l. :
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