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I N V A R I A N T  O R D E R S  ON T H R E E - D I M E N S I O N A L  

L I E  GR O U P S  

A. K. G u t s  UDC 519.46 

A leksandrov has shown [1] that an isotonic (i.e., o rder -preserv ing)  homeomorphism of a commutative Lie 
group onto itself is an i somorphism,  provided the order  is not quasicyl indricaL An example is given in [2] of 
a noncommutative Lie group for  which an analogous resul t  is valid. 

The following questions are of in teres t  in this context: 

1) Does an invariant order  exist for any noncommutative Lie group; 

2) are  the corresponding isotonic homeomorphisms  automorphisms;  

3) to what extent does the concept of quasicy!indrical  order  correspond to the exceptional case not 
covered by a theorem of Aleksandrov 's  type. 

In the present  paper  we give some partial  results  concerning only connected, simply connected, t h ree -  
dimensional  Lie groups,  i.e., the universal  covering groups of three-dimensional  groups. 

It turns out that for  these groups,  the existence of a global invariant order  is not such a r a re  phenom- 
enon, which means that the result  of A leksandrov can be extended even to noncommutative groups. However, 
upon doing this, the quasicyl indricaI  orders  lose their exeeptiona[ charac ter .  

Two groups remain unstudied. 

1. D E F I N I T I O N S  

1.1. Let G n be ann-dimensional  Lie group. We assume that each point x ~ Gn is put in correspondence 
with a set Px in such a way that: 

i) x ~ Px; 

2) if y ~ Px, then Py c Px; 

3) if x ~ y, then Px ~ Py" 

Then it is easy to introduce a part ial  order  on Gn by putting x _< y if and only i f y  ~ P x -  If condition 3) 
is not satisfied,  then we speak of a p re -o rde r .  

1.2. The order  is called invariant if for any elements  x and y we have 

x.Py-~-P,.~. 

1.3. A mapping f : G n - - G n  is called isotonic if it p rese rves  the identity, i.e.,  f(e) = e, and if for any 
x ~ G n w e h a v e  
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](P~) =Pi(=~, 

that is,  x _< y implies f(x) _< f(y). 

1.4. Let L and H (L N H = {e}) be a one -pa rame te r  semigroup and an (n - 1)--dimensiona[ subgroup of 
the n-dimensional  group G n, respect ively.  We denote by L(g) (e ~ g) a subset of the semigroup L homeo-  
morphic to the unit interval [0, 1] in the rea l  numbers ,  e and g corresponding to the endpoints 0 and 1, r e -  
spectively,  of [0, 1]. Fur the r ,  by [a, b] we mean a subset of G n for which there exists h ~ Gn such that 
h .  [a ,  b] = L(g) and h . a  :- e, h - b  = g. 

We define a mapping dL(g)H in the following way: 

(1) dL(g)H is a homeomorphism of G n onto itself; 

(2) dL(g)H maps every coset  hH on toa  coset  h'H by left t ranslat ion,  i.e., 

dL(gl~ (hH) .= h"" hH; 

(3) dL(g)H maps every , in terval"  [a,  b] onto another "interval,, of the same type. 

1.5. A set is said to be a quasicyl inder  Q[L(g), H] if its image under dL(g)H coincides with the image 
under left t ranslat ion by some element  in Gn, i .e. ,  if there exists t ~ Gn such that 

dL(g)•(Q[L(g), H ] ) = t . Q [ L ( g ) ,  It]. 

We do not exclude the case  that L(g) coincides with L, and we denote such a quasicyl inder  by Q[L, HI. 

If L1,.  �9 �9 , L n a re  n dist inct  one -pa rame te r  sere[groups in Gn, then their  Cartesian product is a quas i -  
cyl inder  Q[Li, Hi], where H i is an (n - 1)-dimensional subgroup generated by one-paramete r  subgroups L[ . . . . .  

t LI_I, . . . . .  where b = q" 

2. T H R E E - D I M E N S I O N A L  L I E  A L G E B R A S  AND L I E  G R O U P S  

Since we do not have a genera[  method for solving the questions that interest  us, the three--dimensional 
Lie groups are  of special  interest  in that there exist  only nine rea l  nonisomorphic types of Lie algebras for 
them. This allows us to study each Lie group G 3 case by case in te rms  of its dependence on its Lie algebra. 

2.1. We list the three--dimensional Lie a lgebras  g3 (cf. [3, p. 72]). 

The solvable ones are  

g3I) [XiXj] = 0 (i, j = 1, 2, 3); 

g3II) [X1X2] = O, [X2X~] = Xl, [X3X 1] = O; 

g3III) [X1X2] = 0, [X2X3] = 0, [X1X3] = X1; 

g3IV) [X1X2] = O, [X2X3] = XI + X2, [X1X3] = X1; 

g3V) [X1X2] = O, [X2X3] = X2 ,  [XIX3] = X l ;  

g3VI) [X1X~] = O, [X2X3] = qX 2, [X1X~] = Zl (q ;~ O, 1); 

g3VII) [X1X~] = 0, [X2X3] = -X1 + qX2, [X1X3] = X2 (q2 < 4). 

The nonsolvable ones are  

gaVIII) [X1X 2] = X1, [X2X a] = X3, [X~X3] = 2X2; 

galX) [X1X2] = Xa, [X2X3] = Xl, [X3Xl] = X2. 

2.2. We are  interested only in connected,  simply connected Lie groups. For  a Lie a lgebra  g3 there 
exists a global connected, simply connected Lie group G 3 having Lie algebra isomorphic to g3 [5]. Moreover ,  
in the case of a solvable Lie algebra the corresponding group is homeomorphic to the Euclidean space E 3 and 
hence is noncompact [4, p. 432]. 

Since all Lie  groups with a given Lie algebra are  loca![y isomorphic [5],-the connected, simply connected 
Lie group appearing among them is unique up to i somorphism [4, p. 374]. This Lie group is the universa l  

cover ing group. 

The connected, simply connected Lie groups with Lie a lgebras  g3I-g31Xwill be denoted by G31-G~IX, 

respect ively.  
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2.3. The fol lowing a s s e r t i o n  is evident :  If  the group G has  an invar ian t  o r d e r ,  and if the g roup  G '  is 
i s o m o r p h i c  to G, i .e . ,  G = G ' ,  then G '  a l s o  has  an invar ian t  o rde r .  

3 .  O R D E R S  ON T H E  L I E  G R O U P S  G 3 t -  G 3 V I  A N D  G 3 I X  

3.1. We say  that  an o r d e r  Pe  is good if 

1) Pe  conta ins  an i n t e r io r  point;  

2) (exP)e ~(pe) con ta ins  a ray  i ssu ing  f r o m  ze ro .  

We a re  in t e re s t ed  only in good o r d e r s .  

3.2. We say  that  the g roup  G has  p r o p e r t y  5r if it has  a good invar ian t  o r d e r  such  that  any isotonic  
h o m e o m o r p h i s m  of G onto i t se l f  is an a u t o m o r p M s m .  

3.3. THEOREM.  The  Lie g roups  G3I-G3V and G3VI (0 < q < 1) have p r o p e r t y  ~r o The group G31~ does  not 
not have a good o rde r .  

P r o o f .  We r e p r e s e n t  the group G 3 as  a g roup  of t r a n s f o r m a t i o n s  ac t ing  s imply  t r ans i t i ve ly  or~ some  
suff ic ient ly  good space  M. M wilt  be e i t he r  the Euc l idean  space  E3, the hyperbo l i c  space  r or  the sphe re  $3. 

F ix  a point  x 0 ~ M. Then  we eas i ly  get  a h o m e o m o r p h i s m  e b e t w e e n  M and G 3 
cp 

Gang-+ g(xo) ~M.  (1) 

If now P is an invar ian t  o r d e r o n G  3, the fami ly  {Px  :x  ~ M}, whe re  Px  = (P(P~P-lx) def ines  an o r d e r  on M in-  
va r i an t  with r e s p e c t  to G3, i .e . ,  f o r  any x ~ M arid g ~ G 3 we have g(Px) = Pg(x)-'" ( ) C o n v e r s e l y ,  if" {Px~' ~ is an 
o r d e r  on M invar ian t  with r e s p e c t  to G3, then {Pg  :g  ~ G3} , where  

is an invar ian t  o r d e r  on G 3. 

In view of this,  it suf f ices  to study the o r d e r s  on M invar ian t  with r e s p e c t  to G 3 (the G3-ir~variant o rde r s ) .  

a) G3I. Here  M = E 3 and G3I is a g roup  of t r ans l a t ions .  That  G3I has p r o p e r t y  ~r fol lows f r o m  the r e -  
sui ts  of A l e k s a n d r o v  [1]. 

b) G3II. H e r e  M = Z/~. It is convenien t  to pass  to the P o i n c a r ~  model  ~3 of ~u ~3: = {(x, y ,  z) ~ E ~  : z > 
0}, whe re  x ,  y ,  z a r e  r e c t i l i n e a r  C a r t e s i a n  coord ina te s .  The g roup  G3II cons i s t s  of the t r a n s f o r m a t i o n s  of the 
type 

g: (x, g, z)--~(x--}-cz, ~.x-4-y-f-~, (1-t-~)z), 

whe re  X > - 1 ,  a ,  ~ a r e  r e a l  number s .  The in f in i t e s imal  o p e r a t o r s  a r e :  

a a o a X l--g-~x,- X., = --~,j, X~=z-g -~  § z--~.o 

A G3II - invar ian t  o r d e r  is defined by the q u a s i c y l i n d e r  

P(e,o,~)={(x, y, z)~.,)s:x~>O, y>~(~- - l )x ,  z~>(z}, xo=(O, O, l) ,  

and Px ,  Py  a r e  obtained f r o m  one ano ther  by p a r a l l e l  t r ans l a t ion  in case  the i r  z coo rd ina t e s  a r e  equal.  We 
show that  an i sotonic  h o m e o m o r p h i s m  f (f(x0) = x0) fo r  the above o r d e r  m u s t  have the f o r m  

f(x, g, z)-~. (gx, gg, z). (2) 

Denote  by Fix0 , F2 0, r3x0 , respect . ive ty ,  the f aces  of the t h r e e - f a c e d  angle 3Px0 which lie in the planes given by 
z = 1, x = 0, y = 0. Pu t  I 'x = g(r:~0), whe re  g ~ G 3 is such that 'g(xo) = x .  

Let  

' ~ r ~ + (0, - 0~, ~ > 0 .  
(x,u) (y,z) y=(~- - t )x  

C l e a r l y ,  rl~ is the plane {z = ~}, I]~ is the half-plane {x = a ,  z > 0}, and 1 I} , / i s t heha l f -p l ane  {y = ( r  1)x, 
z _> /3}. Since f is a h o m e o m o r p h i s m  and 11},/has boundary ,  the image  of 13}T can only be rt},,/,. Since fo r  any 

13 i the re  ex i s t s  I I~ , / such  that  P'k 0 l ~T  = ~b, the image  of [lk can  only be I I i , ,  fo r  any rI 2 i n t e r s e c t s  any IlS./. 

I t  fol lows f r o m  this  that  f p r e s e r v e s  the fami ly  of the z c o o r d i n a t e s  of the l ines and a l so  the coo rd ina t e  plane 
{z = 1}. But then f has  the f o r m  
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/(x, ~, z) =(h(x ,  ~),/~(x, ~), h(z)). 

We r e m a r k  tha t  if  fit, f~2, /~ a r e  d i s t inc t  and &,  f~2, /33 < 1, then the i n t e r s e c t i o n s  II~ /3 l]~l,T, ~ 3 l H i ~ U , IIi fi 
�9 . & Y  

lq~ ~. def ine  t h r e e  f a m i l i e s  of p a r a l l e l  l ines on fl~ = {z = 1}. T h e s e  a r e  mapped  by f into t h r e e  f a m t h e s  of 
p a r a l l e l  l ines .  But then f is aff ine on [I~, i . e . ,  

h(z ,  y ) = a . z + b . y ,  /2(x, y).--.~cx+dy 

[1, p. 12]. 

Since the l ines  {x = 0, z : 1} and {y = 0, z = 1} go  into t h e m s e l v e s ,  we have  b = c = 0, i .e . ,  ft(x, y) = ax ,  
f2 (x, y)  = dy.  

T h e  n u m b e r s  a ,  d a r e  pos i t i ve  s ince  f(Px0) = Px0. 

Since f(P(0~0,X)) = P(o,o,(d/a)~) = P(0,0,f3(~)), we have  f3(X) = d?~/a. 

But f3(1) = 1. Hence  d = a = p  and f3(z) = z. Th i s  p r o v e s  Eq. (2). An isotonic  h o m e o m o r p h i s m  f :J&--+J/.~ 
induces  an i so tohic  h o m e o m o r p h i s m  f :G~I I  - -G~I I  def ined by (1), i .e . ,  

(p 

f (g)---~ l(g(xo) ). (3) 

The  c o n v e r s e  is a l so  val id .  Le t  us  show that  f is an a u t o m o r p h i s m .  

Let  g~, g~ ~ G3II and 
~p 

g,(z, ~, z ) = ' ( x + ~ ,  ;~,z+~+~,, (l+;~l)Z), g,--+(~, ~,, (t+~,)), 

g~(x, y, z)=(x+a~, ~.~z+y+~, (l+~2)z), g~--,-(a~, ~, ( t+~)) .  

Then 
tp 

g2g, ~ g2 ~g, (x0)) = (al +ae, ~2a, + ~1-~-~2, (i-[-)~,) (1-]-~2)) 

de f ines  the law of mu l t i p l i c a t i on  in the g roup  G3II. 

Further, 

f (g2g,)--+ /(g2gl(xo) ).-~ (~a,+pa2, ,X2cz, Wp~,+p.~, (1+)~1) (t+}~e)), 
(p 

f(g~)'-~/(gl(xo)) ~--- (gcq, g~31, ( t + ~ l ) ) ,  
co 

f(g2)-+/(g2(xo)) --~ (gcz2, ~2 ,  (t-]-~.2)). 

Mul t ip lying the e l e m e n t s  f(gt) and f(g2) by (4) we get  
(p 

f(g2) f(gl)~(~cz~+~t~z~, ~;.~cz~+~t,%+~, (,i+x~) (l+x~)). 

C o m p a r i n g  (5) and (6) we conclude  tha t  

i . e . ,  f is an a u t o m o r p h i s m .  

Th i s  m e a n s  tha t  G3II has  p r o p e r t y  ~ t .  

c) G3III. 

f (g2) f (gl) = f  (g2gl), 

We take M = J/s, w h e r e  G3III is g iven  in J/3 by t r a n s f o r m a t i o n s  of the type 

g: (x, y, z)--~(x+~z, ~y+~, ~z), x0= (0, 0, 1), 

(4) 

(5) 

(6) 

w h e r e  A, z > 0. 

H e r e ,  the o r d e r  is the fol lowing:  

P(0 0 , ~ =  {(x, y, z ) ~ 3 : x > ~ 0 ,  y~>)~x, z~>)~}, ~ > 0 ,  

and P x ,  Py  a r e  equa l  and p a r a l l e l  f o r  x and y wi th  equa l  z coo rd ina t e ,  i .e . ,  f o r  z(x) = z(y). 

Denote  by Fix0 , F2x0, F3x0 , r e s p e c t i v e l y ,  the f a c e s  of the t h r e e - f a c e d  angle DPx0 which  lie in the p lanes  
t i 

def ined b y z  = 1 ,  x = 0 ,  a n d y = x .  Pu t  F x = g ( F x 0 ) ,  w h e r e g ~ G  3 i s  such t h a t g ( x  0 ) = x .  

(7) 
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Let 

Evident ty ,  ~k 
the f o r m  

j(x, ~, z )= (ax+@, cz+@, I3(~)). 

Since the lines {x = 0, z = 1}, {y = x ,  z = 1} go into t h e m s e l v e s ,  we have b = 0 and d + c = a.  
a s  in b) that  

"ja( z) = (zd@c)  /a. 

1 9 2 

(x,  u) 

3 Oi, [~>0.  I I ~  = U r(~,,j,~) + (0, 7, . 
y=f~x 

= { z = x } ,  IF a = { x = a ,  z > 0}, and l l } 0 = { y = ~ ,  z _>r Then  we see as  i n b )  t h a t f h a s  

We see aga in  

F u r t h e r ,  the r ay  L = {y = 0, z = 1, x _> 0} is mapped into the ray  L '  lying in {z = 1} and s t a r t ing  at the 

point  x 0. 

But L is a l imit  of the r a y s  

L,=FI~/,,,o N { z = t }  N { x ~ 0 }  as n---~oc. 

Since f is a h o m e o m o r p h i s m  and ({x _> 0} N {y > 0}) @ {x = 0, y = 0} = b~; P(0,0,x), we have that  L '  is a limiL of 
the r a y s  

rI~0(~j,).0 N (z = 1} N {x>~0]and f~(i/~) ,~-=-~-+0. 

It  fol lows f r o m  this that  L '  : L. But then,  c = 0, a = d = ~, i .e . ,  f has  the f o r m  (2). It  is t r iv ia l  to check  
that  f is an a u t o m o r p h i s m .  

The above o r d e r  is quas i cy l i ad r i ca l .  So a lso ,  e .g . ,  is the o r d e r  given by:  

P(o, o, , . ;= {(.h y, z )~~a:z~>~,  x~>O, y~>O}, (8) 

and Px  and Py a r e  equa l  and p a r a l l e l  f o r  z (x) = z 6T). Th i s  o r d e r  is p r e s e r v e d  by m a p s  of the type f(x, y ,  z) = 
(fl (x), f2 (Y), fa(z)), w h e r e  fi a re  in ge ne ra l  a r b i t r a r y  funct ions .  These  funct ions m a y ,  m o r e o v e r ,  be chosen  so  
that  f is not an  a u t o m o r p h i s m  [for ins tance ,  if f3(afi) ~ f3(a)f3(fl)]. 

T h e r e  ex i s t s  an invar ian t  o r d e r  on GaILI which is not quas i .cyl indr ica l ,  namely ,  

p,~. ~, ,., = { (x, y, ~) ~ . ~ :  ~.~:~+y~- (~ -~ )  ~ <  o, z ~>~,} + (~, ~, o)*. 

One might  na tu ra l ly  suppose  that f is an a u t o m o r p h i s m  a l s o  with r e s p e c t  to this o r d e r ,  but this fact  is 
not n e c e s s a r y  for  our  p u r p o s e s .  

d) G3[V. Pu t  M = 3a ,  with the group given on 23 by the t r a n s f o r m a t i o n s  

g:(x~ ~, zi~((l+),)x+Xy+a, ( t + X ) y + ~ ,  ( t+X)~),  ~ . > - - i ,  z > 0 .  

The  i n v a r i a n t  o r d e r  h e r e  i s  the s a m e  as  the  one in 13).* The  r e s t  of the p r o o f  is  ana logous  ~o b), 

e) G3V. M =  oYa with G3V of the f o r m  

g: (x, y, z)~(Xz+~, X~j+~, Xz). 

As shown in [2], it has  p rope r ty  sO. This  g roup  and d3I have been  m o r e  thoroughly  studied than the 
o the rs .  

f) G3VI (0 < q < 1). M = 2/3 , with GaVI given in ]/a by 

g:(x, ~,, z ) - + ( ( t + X ) z + ~ ,  ( l + ~ q ) y + ~ ,  ( l+X)z) ,  

w h e r e  X > - 1 ,  z > O. 

The inva r i an t  o r d e r  with r e s p e c t  to which  G3VI has  p r o p e r t y  j is :  

p(o, o, , , )= {(x,  y, z )~A~:y~>o,  x>~[x/(.l+(~.--1)q]~,, ~>.~.}, x > o ,  

and Px ,  Py a r e  equal  and pa ra l l e l  f o r  z(x) = z(y). 

*More  p r e c i s e l y ,  P(0,0,a) = {Y -> 0, x _> (a - 1 ) y / a ,  z _> a}, a > 0. 
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We establish as in c) that an isotonic homeomorphism has the form (2). It is tr ivial  to check that f : G  3 
G 3 is an automorphism. 

g) G3IX. The Lie algebra of the group G3IX is semisimpie and compact.  Therefore ,  G3IX is compact  
[4, pp. 446,483].  But then G3IX ~ SU (2) [4, p. 498, E]. Since (exP)el(P) contains a ray,  it follows that P con-  
tains a one -pa ramete r  semigroup ~(t), t ~ [0, +~). Let F(t), t ~ ( -~ ,  +~),  be a one-paramete r  subgroup 
cot~tain[ng 7(t). The closure F(t) of F(t) i s an Abelian subgroup of the Lie group G~IX, and is moreover com- 
pact and connected. This means that F(t) is a torus [6]. Since a maximal torus of the group SU(2) is one- 
dimensional [6], F(t) is a compact curve. Then we can find a = F(t0) such that a ~ e, e _< a, and a _< e. But this 
contradicts the third axiom for an order (cf. Sec. i). This proves the theorem. 

4. C O N C  L U S I O N S  

At the beginning of this paper  we stated three questions about orders  on Lie groups. 
them in the following way. 

1) 

2) 

Now we can answer 

Global invar iant  orders  exist  on many noncommutative Lie groups. 

A theorem of the type of Aleksandrov 's  theorem [1]holdsfor thegroupG3V [2], but for the others,  it 
cannot be formulated in the same way as was done in [1]. There fore ,  we speak only of these groups 

as having proper ty  ~t.  

3) A basic difficulty is caused by the fact that for the groups G3II-G3IV and G3VI the concept of quas i -  
cyl indrical  o rder  does not lead to the exceptional case as was the situation with G3I and G3V [1, 2]. 
This is shown by the existence of quasicyl indrica[  orders  on G3III such as (7) and (8). 

4) In studying the groups G3I-G3VI, we see that if they have one -pa ramete r  semigroups Li, L 2, L 3 such 
Y ? 

that: (a) P = L1 • L2 • L3 is a quasicyl indrica[  order ;  (b) for any g ~ L 3 we have g(L~ • L3) = I~ • I~, 
g(L~ x L~) = I~ • L~, where L~ is a one-paramete r  subgroup containing Li (i = 1, 2, 3); (c) L~ • L~ 
is an Abel[an subgroup, then an isotonic map P need not necessar i ly  be an automorphism. 

P roper t i e s  {b) and (c) are  precise ly  the ones distinguishing the o rders  (7), (8). It seems possible that the 
exceptional case in Aleksandrov 's  theorem can in fact be reduced to the existence of a quasicy[inder with prop-  
er t ies  (a), (b), and (c). And then it seems entirely possible that any isotonic mapping in the group G3II might 

be an automorphism (for a good order) .  

We r e m a r k  in conclusion that one can show using the above method the existence of four-dimensional  
Lie groups having proper ty  ~r F o r  this, one uses the classif icat ion of real  four-dimensional  Lie algebras 

[3]. 

1. 

2. 

3. 

4. 
5. 
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