THE DEUTSCH THEORY OF THE MULTIVERSE AND PHYSICAL CONSTANTS¹

Alexander K. Guts²

Department of Computer Science, Omsk State University, 644077 Omsk-77, Russia

The Deutsch multiverse is a collection of parallel universes. In this article, a formal theory and a topos-theoretic model of the Deutsch multiverse are given. For this purpose, the Lawvere-Kock Synthetic Differential Geometry and topos models for smooth infinitesimal analysis are used. Physical properties of multi-variant and many-dimensional parallel universes are discussed. The source of multiplicity of physical objects is the set of physical constants.

Теория мультиверса Дойча и физические константы А.К. Гуц

Мультиверс Дойча — это множество параллельных миров, описываемое в рамках эвереттовской интерпретации квантовой теории. В статье предлагается формальная теория мультиверса на основе синтетической дифференциальной геометрии Ловера-Кока и рассматриваются ее гладкие теоретико-топосные модели. Физические объекты становятся многовариантными, каждый вариант реализуется в параллельной гипервселенной. Источником многовариантности являются физические константы.

1. Intoduction

Deutsch's book [1] gives a sketch of the structure of physical reality named the Multiverse, which is a set of parallel universes. A correct description of the Multiverse can be made only in the framework of quantum theory.

In this article, a formal theory and a topos-theoretic model of the Deutsch multiverse are given.

We wish to preserve the framework of mathematical tools of 4-dimensional General Relativity, and so we shall consider the Universe as a concrete 4-dimensional Lorentzian manifold $\langle \mathcal{R}^4, g^{(4)} \rangle$ (named space-time).

2. Formal theory of the Multiverse

We construct our theory of the Multiverse as a formal theory \mathcal{T} which is maximally similar to General Relativity, i.e., as a theory of *one* 4-dimensional Universe, but other parallel universes must appear under costruction of models of the formal theory.

The basis of our formal theory \mathcal{T} is the Kock-Lawvere Synthetic Differential Geometry (SDG) [2].

It is important to say that SDG has no set-theoretic model because the Lawvere-Kock axiom is incompatible with the Law of excluded middle. Hence we shall construct a formal theory of the Multiverse on the basis of intuitionistic logic. Models for this theory are

²e-mail: guts@univer.omsk.su

smooth topos-theoretic models, and for their description the usual classical logic is used.

In SDG, the commutative ring \mathcal{R} is used instead of the real field \mathbb{R} . The ring \mathcal{R} must satisfy the following

Lawvere-Kock axiom. Let $D = \{x \in \mathcal{R} : x^2 = 0\}$. Then

$$\forall (f \in \mathcal{R}^D) \exists ! (a, b) \in \mathcal{R} \times \mathcal{R} \ \forall d \in D(f(d) = a + b \cdot d).$$

and some other axioms (see in [3, Ch.VII].).

The ring \mathcal{R} includes real numbers from \mathbb{R} and has new elements named *infinitesimals* belonging to the "sets"

$$D = \{ d \in \mathcal{R} : d^2 = 0 \}, ..., D_k = \{ d \in \mathcal{R} : d^{k+1} = 0 \}, ...$$
$$\mathbf{\Delta} = \{ x \in \mathcal{R} : f(x) = 0, \text{ all } f \in m_{\{0\}}^g \},$$

where $m_{\{0\}}^g$ is the ideal of smooth functions having a zero germ at 0, i.e., vanishing in a neighbourhood of 0. We have

$$D \subset D_2 \subset \ldots \subset D_k \subset \ldots \subset \Delta.$$

We can construct a Riemannian geometry for the four-dimensional (formal) manifolds $\langle \mathcal{R}^4, g^{(4)} \rangle$. These manifolds are the basis for the Einstein theory of gravitation [4].

We postulate that the Multiverse is four-dimensional space-time in SDG, i.e., a formal Lorentzian manifold $\langle \mathcal{R}^4, g^{(4)} \rangle$ for which the Einstein field equations hold:

$$R_{ik}^{(4)} - \frac{1}{2}g_{ik}^{(4)}(R^{(4)} - 2\Lambda) = \frac{8\pi G}{c^4}T_{ik}.$$
 (1)

 $^{^1\}mathrm{Talk}$ presented at the 11th Russian Gravitational Conference, Tomsk, 1–7 July 2002

A solution of these equations is the 4-metric $g^{(4)}(x)$, $x \in \mathcal{R}$.

Below we consider the physical consequences of our theory in the so-called well-adapted smooth topos models of the form $\mathbf{Set}^{\mathbb{L}^{op}}$ which contain, as a full subcategory, the category of smooth manifolds \mathcal{M} .

3. Smooth topos models of the Multiverse

Let \mathbb{L} be the dual category for the category of finitely generated C^{∞} -rings. It is called a *category of loci* [3]. Objects of \mathbb{L} are finitely generated C^{∞} -rings, and morphisms are reversed morphisms of the category of finitely generated C^{∞} -rings.

The object (locus) of \mathbb{L} is denoted as ℓA , where A is a C^{∞} -ring. Hence, the \mathbb{L} -morphism $\ell A \to \ell B$ is the C^{∞} -homomorphism $B \to A$.

A finitely generated C^{∞} -ring ℓA is isomorphic to a ring of the form $C^{\infty}(\mathbb{R}^n)/I$ (for some natural number n and some ideal I of finitely generated functions).

The category $\mathbf{Set}^{\mathbb{L}^{op}}$ is a topos [3]. We consider the topos $\mathbf{Set}^{\mathbb{L}^{op}}$ as a model of a formal theory of the Multiverse.

From Deutsch's point of view, the transition to a concrete model of a formal theory is creation of *virtual* reality³. Physical Reality that we perceive was called by Deutsch the Multiverse⁴. Physical Reality is also virtual reality which was created by our brain [1, p.140].

A model of the Multiverse is a generator of virtual reality which has some repertoire of environments. A generator of virtual reality creates environments, and we observe them. Let us explain it.

Under the interpretation $i: \mathbf{Set}^{\mathbb{L}^{op}} \models \mathcal{T}$ of the formal Multiverse theory \mathcal{T} in the topos $\mathbf{Set}^{\mathbb{L}^{op}}$, objects of the theory, for example, the ring \mathcal{R} , the power $\mathcal{R}^{\mathcal{R}}$ and so on are interpreted as objects of the topos, i.e., functors $F = i(\mathcal{R}), \ F^F = i(\mathcal{R}^{\mathcal{R}})$ and so on. Maps, e.g., $\mathcal{R} \to \mathcal{R}, \ \mathcal{R} \to \mathcal{R}^{\mathcal{R}}$ are now morphisms of the topos $\mathbf{Set}^{\mathbb{L}^{op}}$, i.e., natural transformations of functors: $F \to F, \ F \to F^F$.

Finally, under an interpretation of the language of a formal Multiverse theory, we must interpret elements of the ring \mathcal{R} as "elements" of the functors $F \in \mathbf{Set}^{\mathbb{L}^{op}}$. In other words, we must give an interpretation of the relation $r \in \mathcal{R}$. It is a very difficult problem because the functor F is defined on the category of loci \mathbb{L} ; its independent variable is an arbitrary locus ℓA , and the dependent variable is a set $F(\ell A) \in \mathbf{Set}$. To solve this problem, we consider generalized elements $x \in_{\ell A} F$ of the functor F.

A generalized element $x \in_{\ell A} F$, or an element x of the functor F at stage ℓA , is called an element $x \in$ $F(\ell A)$.

Now we interpret the element $r \in \mathcal{R}$ as a generalized element $i(r) \in_{\ell A} F$, where $F = i(\mathcal{R})$. We have as many such elements as many loci. A transition to the model **Set**^{\mathbb{L}^{op}} causes "reproduction" of the element r. It begins to exist in an infinite number of variants $\{i(r): i(r) \in_{\ell A} F, \ell A \in \mathbb{L}\}.$

Note that since the 4-metric $g^{(4)}$ is an element of the object $\mathcal{R}^{\mathcal{R}^4 \times \mathcal{R}^4}$, the "intuitionistic" 4-metric begins to exist in an infinite number of variants $i(g)^{(4)} \in_{\ell A}$ $i(\mathcal{R}^{\mathcal{R}^4 \times \mathcal{R}^4})$. Denote such a variant as $i(g)^{(4)}(\ell A)$.

To simplify the interpretation, we shall operate with objects of models $\mathbf{Set}^{\mathbb{L}^{op}}$. In other words, we shall write $g^{(4)}(\ell A)$ instead of $i(g)^{(4)}(\ell A)$.

Every variant $g^{(4)}(\ell A)$ of the 4-metric $g^{(4)}$ satisfies its "own" Einstein equations [4]

$$R_{ik}^{(4)}(\ell A) - \frac{1}{2}g_{ik}^{(4)}(\ell A)[R^{(4)}(\ell A) - 2\Lambda(\ell A)]$$
$$= \frac{8\pi G}{c^4}T_{ik}(\ell A).$$

(The constants c and G can also have different values at different stages ℓA).

It follows from the theory that, when $\ell A = \ell C^{\infty}(\mathbb{R}^m)$, then

$$g^{(4)}(\ell A) = [g \in_{\ell A} \mathcal{R}^{\mathcal{R}^4 \times \mathcal{R}^4}] \equiv g^{(4)}_{ik}(x^0, ..., x^3, a) dx^i dx^k, a = (a^1, ..., a^m) \in \mathbb{R}^m.$$

We extend the four-dimensional metric $g_{ik}^{(4)}(x^0, ..., x^3, a)$ to a (4+m)-metric in the space \mathbb{R}^{4+m} :

$$g_{AB}^{(4+m)} dx^A dx^B \equiv g_{ik}^{(4)}(x^0, ..., x^3, a) dx^i dx^k - da^{1^2} - ... - da^{m^2}.$$
 (2)

We get the (4+m)-dimensional pseudo-Riemannian geometry $\langle \mathbb{R}^{4+m}, g_{AB}^{(4+m)} \rangle$.

Symbolically, the procedure of creation of multidimensional variants of the space-time geometry by means of the intuitionistic 4-geometry $\langle \mathcal{R}^4, g^{(4)} \rangle$ can be represented as the formal sum

$$g^{(4)} = c_0 \cdot \underbrace{[g^{(4)} \in_{\mathbf{1}} \mathcal{R}^{\mathcal{R}^4 \times \mathcal{R}^4}]}_{4\text{-geometry}} + c_1 \cdot \underbrace{[g^{(4)} \in_{\ell C^{\infty}(\mathbb{R}^1)} \mathcal{R}^{\mathcal{R}^4 \times \mathcal{R}^4}]}_{5\text{-geometry}} + \dots + c_{n-4} \cdot \underbrace{[g^{(4)} \in_{\ell C^{\infty}(\mathbb{R}^{n-4})} \mathcal{R}^{\mathcal{R}^4 \times \mathcal{R}^4}]}_{n\text{-geometry}} + \dots,$$

where the coefficients c_m are taken from the field of complex numbers.

Since the number of stages is infinite, we must write an integral instead of the sum:

$$g^{(4)} = \int_{\mathbb{L}} \mathcal{D}[\ell A] c(\ell A) [g^{(4)} \in_{\ell C^{\infty}(\mathbb{R}^{n-4})} \mathcal{R}^{\mathcal{R}^{4} \times \mathcal{R}^{4}}].$$
(3)

³This thought belongs to Artem Zvyagintsev.

 $^{{}^{4}}$ Multiverse = many (multi-) worlds; a universe is one (uni-) world.

Using the notations of quantum mechanics⁵,

$$g^{(4)} \to |g^{(4)}\rangle, \ [g^{(4)} \in_{\ell C^{\infty}(\mathbb{R}^{n-4})} \mathcal{R}^{\mathcal{R}^4 \times \mathcal{R}^4}] \to |g^{(4)}(\ell A)\rangle.$$

Then (3) is rewritten in the form

$$|g^{(4)}\rangle = \int_{\mathbb{L}} \mathcal{D}[\ell A]c(\ell A)|g^{(4)}(\ell A)\rangle.$$
(4)

Consequently, formally the Lawvere-Kock 4-geometry $\langle \mathcal{R}^4, g^{(4)} \rangle$ is the infinite sum

$$\mathcal{R}^4 = \int_{\mathbb{L}} \mathcal{D}[\ell A] c(\ell A) \mathcal{R}^4_{\ell A}$$

of classical multidimensional pseudo-Riemmanian geometries $\mathcal{R}^4_{\ell A} = \langle \mathbb{R}^{4+m}, g^{(4+m)}_{AB}(x,a) \rangle$ any of which contains a foliation of 4-dimensional parallel universes (leaves) (under fixed a = const). The geometric properties of these universes, as was shown in [6, 7], are different even within the same stage ℓA .

Now we recall the environments of virtual reality which must appear when referring to a Multiverse model, in this instance, to the model $\mathbf{Set}^{\mathbb{L}^{op}}$. This model is a generator of virtual reality. It is not difficult to understand that the generalised element $|g^{(4)}(\ell A)\rangle$ is a metric of a specific environment (=hyperspace $\mathcal{R}^4_{\ell A}$) with the "number" ℓA . In other words, the study of any object of the theory \mathcal{T} at stage ℓA is a transition to one of the environments from the repertoire of the virtual reality generator $\mathbf{Set}^{\mathbb{L}^{op}}$.

4. The Gödel-Deutsch Multiverse

As an example of the Multiverse, consider the cosmological solution obtained by Kurt Gödel [8]:

$$g_{ik}^{(4)} = \alpha^2 \begin{pmatrix} 1 & 0 & e^{x^4} & 0\\ 0 & -1 & 0 & 0\\ e^{x^1} & 0 & e^{2x^1}/2 & 0\\ 0 & 0 & 0 & -1 \end{pmatrix}.$$
 (5)

This metric satisfies the Einstein equations (1) with the energy-momentum tensor of dust matter

 $T_{ik} = c^2 \rho u_i u_k,$

if

$$\frac{1}{\alpha^2} = \frac{8\pi G}{c^2}\rho, \qquad \Lambda = -\frac{1}{2\alpha^2} = -\frac{4\pi G\rho}{c^2}.$$
 (6)

Take

$$\alpha = \alpha_0 + d, \qquad \Lambda = \Lambda_0 + \lambda, \qquad \rho = \rho_0 + \varrho,$$
(7)

where $d, \lambda, \rho \in D$ are infinitesimals, and substitute these into (6). We get

$$\frac{1}{(\alpha_0 + d)^2} = \frac{1}{\alpha_0^2} - \frac{2d}{\alpha_0^3} = \frac{8\pi G}{c^2} (\rho_0 + \varrho)$$

$$2\Lambda_0 + 2\lambda = -\frac{1}{\alpha_0^2} + \frac{2d}{\alpha_0^3},$$

$$\Lambda_0 + \lambda = -\frac{4\pi G\rho_0}{c^2} - \frac{4\pi G\varrho}{c^2}.$$

Suppose that $\alpha_0, \ \Lambda_0, \ \rho_0 \in \mathbb{R}$ satisfy the relations (6). Then

$$\lambda = -\frac{4\pi G}{c^2}\varrho, \qquad d = -\frac{4\pi G\alpha_0^3}{c^2}\varrho$$

Under the interpretation in the smooth topos $\mathbf{Set}^{\mathbb{L}^{op}}$, the infinitesimal $\varrho \in D$ at the stage $\ell A = C^{\infty}(\mathbb{R}^m)/I$ is a class of smooth functions of the form $\varrho(a) \mod I$, where $[\varrho(a)]^2 \in I$ [3, p.77].

Consider the properties of the Gödel-Deutsch multiverse at the stage $\ell A = \ell C^{\infty}(\mathbb{R})/(a^4)^{-6}$, where $a \in \mathbb{R}$. Obviously, it is possible to take an infinitesimal of the form $\varrho(a) = a^2$. The Multiverse at this stage is a 5dimensional hyperspace. This hyperspace contains a foliation whose leaves are defined by the equation a =const. The leaves are parallel universes in the hyperspace (environment) $\mathcal{R}_{\ell A}^4$ with the metric $g^{(4)}(\ell A) =$ $g_{ik}^{(4)}(x,a)$ defined by Eqs. (5), (7). The density of dust matter $\rho = \rho_0 + \varrho(a)$ grows from the classical value $\rho_0 \sim 2 \cdot 10^{-31}$ g/cm³ to $+\infty$ as $a \to \pm\infty$. The cosmological constant also grows infinitely to $-\infty$. Hence the parallel universes have physical properties different from those of our Universe.

At the stage $\ell A = \ell C^{\infty}(\mathbb{R})/(a^2)$, $\varrho(a) = a$ and $\rho = \rho_0 + \varrho(a) \to -\infty$ as $a \to -\infty$, i.e., ρ is not physically interpreted (we have "exotic" matter with negative density).

Finally, at the stage $\mathbf{1} = \ell C^{\infty}(\mathbb{R})/(a)$ all $\varrho(a) = d(a) = \lambda(a) = 0$, i.e., we have the classical Gödel universe.

5. The Friedmann-Deutsch Multiverse

Now we consider Friedmann's closed model of the Universe, which, in the coordinates $(x^0, \chi, \theta, \varphi), x^0 = ct$, has the following metric:

$$ds^{2} = g_{ik}^{(4)} dx^{i} dx^{k}$$

= $c^{2} dt^{2} - R^{2}(t) [d\chi^{2} + \sin^{2}\chi (d\theta^{2} + \sin^{2}\theta d\varphi^{2})].$ (8)

This metric satisfies the Einstein equations with the energy-momentum tensor of dust matter

$$T_{ik} = c^2 \rho u_i u_k,$$

*(*1)

⁵Dirac's notations are: $|P\rangle = \psi(\xi)\rangle \equiv \psi(\xi)$; in our case $\psi(\xi)$ is $g^{(4)}$ (a representative of the state $|P\rangle$), and $|P\rangle$ is $|g^{(4)}\rangle$ [5, p.111-112].

⁶Here $(f_1, ..., f_k)$ is an ideal of the ring $C^{\infty}(\mathbb{R}^n)$ generated by the functions $f_1, ..., f_k \in C^{\infty}(\mathbb{R}^n)$, i.e., having the form $\sum_{i=1}^k g_i f_i$, where $g_1, ..., g_k \in C^{\infty}(\mathbb{R}^n)$ are arbitrary smooth functions.

under the condition that

$$\rho R^3(t) = \text{const} = \frac{M}{2\pi^2},\tag{9}$$

$$R = R_0(1 - \cos\eta), \qquad t = \frac{R_0}{c}(\zeta - \sin\eta), \qquad (10)$$

$$R_0 = \frac{2GM}{3\pi c^3},\tag{11}$$

where M is sum of body masses in 3-space [9, p.438]. Let

$$G = k + d, \qquad d \in D, \tag{12}$$

where $k = 6,67 \cdot 10^{-8} [CGS]$ is the classical gravitational constant.

At the stage $\mathbf{1} = \ell C^{\infty}(\mathbb{R})/(a)$, d(a) = 0, i.e., we have the classical Friedmann Universe.

Consider the state of the Friedmann-Deutsch multiverse at the stage $\ell A = \ell C^{\infty}(\mathbb{R})/(a^4)$, where $a \in \mathbb{R}$. It is obviously possible to take an infinitesimal of the form $d(a) = a^2$. The Multiverse at this stage is a 5dimensional hyperspace. This hyperspace contains a foliation whose leaves are defined by the equation a =const. The leaves are parallel universes in the hyperspace (environment) $R^4_{\ell A}$ with the metric $g^{(4)}(\ell A) =$ $g^{(4)}_{ik}(x, a)$ defined by Eqs. (8)–(11).

The radius of a "Universe" with the number a = const and the dust density following from (9) is equal to

$$R = \frac{2M}{3\pi c^3} (k+a^2)(1-\cos\eta),$$

$$\rho(a) = \frac{27\pi c^9}{16k^3 M^2 (1-\cos\eta)^3} \left(1-\frac{3}{k}d(a)\right).$$

So, with $d = a^2$, the radius of parallel universes with numbers $|a| \to +\infty$ grows to $+\infty$. The dust density $\rho(a)$ decreases, then $\rho(a)$ crosses zero and becomes negative, $\rho(a) \to -\infty$ as $|a| \to +\infty$. All this tells us that the parallel universes can have physical characteristics which are absolutely different from the characteristics of our Universe.

6. Transitions between parallel hyperspaces

A change of the stage ℓA into the stage ℓB is a morphism between the two stages,

 $\ell B \xrightarrow{\Phi} \ell A.$

When $\ell A = \ell C^{\infty}(\mathbb{R}^n)$ and $\ell B = \ell C^{\infty}(\mathbb{R}^m)$, the transition Φ between the stages gives the smooth mapping

$$\phi: \mathbb{R}^m \ni b \to a \in \mathbb{R}^n, \qquad a = \phi(b).$$

Hence if the constants are G = G(a) and $\Lambda = \Lambda(a)$ at the stage ℓA , then we have at the new stage ℓB : $G = G(\phi(b))$ and $\Lambda = \Lambda(\phi(b))$. In other words, the dependence of the physical constants on the extra dimensions is transformed into their dependence on some extra field ϕ . This fact can be useful in connection with the investigations concerning the introduction of an effective gravitational constant depending on some scalar field (see, e.g., [10]).

7. Conclusion

As follows from Sections 4 and 5, a source of multiplicity of objects and the appearance of parallel hyperspaces are the physical constants (such as ρ, Λ, G). A reason for this is the following. Traditionally we consider the physical constants as real numbers. It means an impossibility of findings their exact values. So we must assume that a physical constant is $K = K_0 + d$ where d is an infinitesimal. The latter gives multiplicity.

References

- D. Deutsch, "The Fabric of Reality", Allen Lane, Penguin Press, 2000.
- [2] A. Kock, "Synthetic Differential Geometry", Cambridge Univ. Press, 1981.
- [3] I. Moerdijk and G.E. Reyes, "Models for Smooth Infinitesimal Analysis", Springer-Verlag, 1991.
- [4] A.K. Guts and E.B. Grinkevich, "Toposes in General theory of Relativity", gr-qc/9610073.
- [5] P.A.M. Dirac, "Principles of Quantum Mechanics", Nauka, Moscow, 1979.
- [6] A.K. Guts and A.A. Zvyagintsev, "Solution of the vacuum Einstein equations in Synthetic Differential Geometry of Kock-Lawvere", physics/9909016.
- [7] A.K. Guts and A.A. Zvyagintsev, "Interpretation of intuitionistic solution of the vacuum Einstein equations in smooth topos", gr-qc/0001076.
- [8] K. Gödel, Rev. Mod. Phys. 21, 447 (1949).
- [9] L. Landau and E. Lifshitz, "The Theory of Field", Moscow. Nauka, 1973.
- [10] J.P. Mbelek and M. Lachieze-Rey, "A five-dimensional model of varying effective gravitational and fine structure constants", gr-qc/0205089.