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THE DEUTSCH THEORY OF THE MULTIVERSE

AND PHYSICAL CONSTANTS!
Alexander K. Guts?

Department of Computer Science, Omsk State University, 644077 Omsk-77, Russia

The Deutsch multiverse is a collection of parallel universes. In this article, a formal theory and a topos-theoretic
model of the Deutsch multiverse are given. For this purpose, the Lawvere-Kock Synthetic Differential Geometry and
topos models for smooth infinitesimal analysis are used. Physical properties of multi-variant and many-dimensional
parallel universes are discussed. The source of multiplicity of physical objects is the set of physical constants.

Teopus mynbTuBepca Honua u pusnmueckue KOHCTAHTHI

A.K. T'yx

Mynsrusepc Iofiua — 3TO MHOXKECTBO IIAapaJIIEILHBIX MUPOB, OIMKCHIBAEMOE B PAMKaX 3BEPETTOBCKOW MHTEPIIPE-
Tauuu KBAaHTOBOW Teopuu. B crarbe mpensaraercs (GopMasibHas TeOpus MYJIbTUBEPCA HA OCHOBE CUHTETUYIECKON
nuddepennmanbHoi reomerpun Jlosepa-Koka n paccMaTpuBaioTcs ee riangkue T€OPETUKO-TONOCHBIE Momenn. DPusn-
qecKre OObEKTHI CTAHOBSITCS MHOI'OBAPUAHTHBIMHE, KaXXIHIN BADUAHT PEAIM3YyeTCs B NTapaJsliIeJIbHON I'MIIEPBCEJIEHHON.
WcTouHrnkoM MHOTOBApUMAHTHOCTH SIBJISIIOTCS GU3UUIECKE KOHCTAHTHL.

1. Intoduction

Deutsch’s book [1] gives a sketch of the structure of
physical reality named the Multiverse, which is a set of
parallel universes. A correct description of the Multi-
verse can be made only in the framework of quantum
theory.

In this article, a formal theory and a topos-theoretic
model of the Deutsch multiverse are given.

We wish to preserve the framework of mathematical
tools of 4-dimensional General Relativity, and so we
shall consider the Universe as a concrete 4-dimensional
Lorentzian manifold (R* ¢ ) (named space-time).

2. Formal theory of the Multiverse

We construct our theory of the Multiverse as a formal
theory 7 which is maximally similar to General Rela-
tivity, i.e., as a theory of one 4-dimensional Universe,
but other parallel universes must appear under costruc-
tion of models of the formal theory.

The basis of our formal theory 7 is the Kock-
Lawvere Synthetic Differential Geometry (SDG) [2].

It is important to say that SDG has no set-theoretic
model because the Lawvere-Kock axiom is incompati-
ble with the Law of excluded middle. Hence we shall
construct a formal theory of the Multiverse on the ba-
sis of intuitionistic logic. Models for this theory are
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smooth topos-theoretic models, and for their descrip-
tion the usual classical logic is used.

In SDG, the commutative ring R is used instead of
the real field R. The ring R must satisfy the following

Lawvere-Kock axiom. Let D = {x € R : 22 = 0}.
Then

Y(f € RP)A(a,b) e R x RVd € D(f(d) =a+b-d).
and some other axioms (see in [3, Ch.VII].).

The ring R includes real numbers from R and has
new elements named infinitesimals belonging to the
“SQtS”

D={deR:d*=0},...Dp={deR:d""' =0},..
A={zeR: f(z)=0, allfemﬁio}},

where m?o} is the ideal of smooth functions having a

zero germ at 0, i.e., vanishing in a neighbourhood of 0.
We have

DCDyC..CDpC...CA.

We can construct a Riemannian geometry for the
four-dimensional (formal) manifolds (R*,¢* ). These
manifolds are the basis for the Einstein theory of gravi-
tation [4].

We postulate that the Multiverse is four-dimensional

space-time in SDG, i.e., a formal Lorentzian manifold
(R*, g™ for which the Einstein field equations hold:

_ 8rG

1
s (1)

Ry = 595 (R —20)
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A solution of these equations is the 4-metric ¢ (),
zeR.

Below we consider the physical consequences of our
theory in the so-called well-adapted smooth topos mod-
els of the form Set™”" which contain, as a full subcate-
gory, the category of smooth manifolds M.

3. Smooth topos models of the
Multiverse

Let IL be the dual category for the category of finitely
generated C°°-rings. It is called a category of loci
[3]. Objects of L are finitely generated C'*°-rings, and
morphisms are reversed morphisms of the category of
finitely generated C'*°-rings.

The object (locus) of L is denoted as £A, where A
is a C*°-ring. Hence, the L-morphism (A — (B is the
C*°-homomorphism B — A.

A finitely generated C'*°-ring ¢A is isomorphic to a
ring of the form C*°(R™)/I (for some natural number
n and some ideal I of finitely generated functions).

The category Set™” is a topos [3]. We consider
the topos Set™” as a model of a formal theory of the
Multiverse.

From Deutsch’s point of view, the transition to a
concrete model of a formal theory is creation of wvirtual
reality®. Physical Reality that we perceive was called by
Deutsch the Multiverse*. Physical Reality is also virtual
reality which was created by our brain [1, p.140].

A model of the Multiverse is a generator of virtual
reality which has some repertoire of environments. A
generator of virtual reality creates environments, and
we observe them. Let us explain it.

Under the interpretation i : Set™” |= 7 of the for-
mal Multiverse theory 7 in the topos Set™ , objects
of the theory, for example, the ring R, the power R?
and so on are interpreted as objects of the topos, i.e.,
functors F = i(R), F¥ = i(R%®) and so on. Maps,
eg, R = R, R — R® are now morphisms of the
topos Set]]“op7 i.e., natural transformations of functors:
F—-F,F—FF.

Finally, under an interpretation of the language of a
formal Multiverse theory, we must interpret elements of
the ring R as “elements” of the functors F € Set™” .
In other words, we must give an interpretation of the
relation r € R. It is a very difficult problem because
the functor F' is defined on the category of loci LL; its
independent variable is an arbitrary locus ¢A, and the
dependent variable is a set F(¢A) € Set. To solve this
problem, we consider generalized elements © €44 F of
the functor F'.

A generalized element x €54 F, or an element x of
the functor F at stage (A, is called an element x €

3This thought belongs to Artem Zvyagintsev.
4Multiverse = many (multi-) worlds; a universe is one (uni-)
world.

F(tA).

Now we interpret the element r € R as a general-
ized element i(r) €44 F, where F' = i{(R). We have
as many such elements as many loci. A transition to
the model Set™” causes “reproduction” of the element
r. It begins to exist in an infinite number of variants
{Z(T) : 1(7‘) Eop F, (A € L}.

Note that since the 4-metric ¢(* is an element of
the object RR4XR4, the “intuitionistic” 4-metric begins
to exist in an infinite number of variants i(g)(4) S
i(RR4XR4). Denote such a variant as i(g)* (¢A).

To simplify the interpretation, we shall operate with
objects of models Set™” . In other words, we shall write
g@® (LA) instead of i(g)®(LA).

Every variant g(*) (¢A) of the 4-metric ¢(* satisfies
its “own” Einstein equations [4]

RED(4) — So) (CARD (14) — 20(04)

87G

(The constants ¢ and G can also have different values
at different stages ¢A).

It follows from the theory that, when A=0C>°(R™),
then

g® (LA) = [g €Eva RR4XR4] = gﬁ)(mo, 2 a)datda®,
a=(a',...,a™) € R™.

(4)

We extend the four-dimensional metric g;,” (2, ..., 2%, a)
to a (4 + m)-metric in the space R*T™:
gff;m)d:EAd:cB =
— @0 3 igk 312 5 om?
=g, (27, ..., 2%, a)dz'dz" — da e —da™ . (2)

We get the (44m)-dimensional pseudo-Riemannian ge-
ometry <R4+m7g§:§m) ).

Symbolically, the procedure of creation of multidi-
mensional variants of the space-time geometry by means
of the intuitionistic 4-geometry (R*, g*) can be rep-
resented as the formal sum

g(4) =cp- [9(4) €1 RR4><724]

4-geometry

4

4
“+c1 - [9(4) G[Coc(Rl) RR xR ]+

5-geometry

4, o4
.t Cp_g- [9(4) €pCoo (Rn—4) RR xR ]—|—,

n-geometry

where the coefficients ¢, are taken from the field of
complex numbers.

Since the number of stages is infinite, we must write
an integral instead of the sum:

g = / DUAI(LA) g €pomgnon) RRZF]. (3)
L
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Using the notations of quantum mechanics®,

4 4
9(4) - |9(4)>7 [9(4) €0 (Rn—1) RF xR ] - \9(4)(&4))-

Then (3) is rewritten in the form

) = / DleAJe(A) g™ (£4)). (4)

Consequently, formally the Lawvere-Kock 4-geometry
(R*, g™ ) is the infinite sum

RY = | DUAIc(tAR} A
/

of classical multidimensional pseudo-Riemmanian ge-
ometries R, = (R¥*m gl (2 4)) any of which
contains a foliation of 4-dimensional parallel universes
(leaves) (under fixed a = const). The geometric prop-
erties of these universes, as was shown in [6, 7], are
different even within the same stage £A.

Now we recall the environments of virtual reality
which must appear when referring to a Multiverse
model, in this instance, to the model Set™ . This
model is a generator of virtual reality. It is not difficult
to understand that the generalised element |g(*) (¢A)) is
a metric of a specific environment (=hyperspace R;} 1)
with the “number” ¢A. In other words, the study of
any object of the theory 7 at stage ¢A is a transition
to one of the environments from the repertoire of the
virtual reality generator Set™” .

4. The Godel-Deutsch Multiverse

As an example of the Multiverse, consider the cosmo-
logical solution obtained by Kurt Goédel [8]:

1

1 0 e* 0

4 _ 9 0 -1 0 0
Jie =X et g et (5)

0 0 0 -1

This metric satisfies the Einstein equations (1) with the
energy-momentum tensor of dust matter

2
Ti = c”pujuy,

if

1 81 1 47 Gp

2 2P A:_ﬁ:_ 2 (6)
Take

Ol:O[0+d, A:A0+)\7 p=po+o, (7)

5Dirac’s notations are: |P) = ¥(&)) = (£); in our case (&)
is g4 (a representative of the state |P)), and |P) is |g(¥) [5,
p.111-112].

where d, A\, o0 € D are infinitesimals, and substitute
these into (6). We get

;—i_ﬁ—%( + )
(g +d)? a3 of 2 poT el
1 2d
200 + 2\ = ——5 + —,

ay A

4 4
Ag+A = — Wg"of 7:59

Suppose that ag, Ag, po € R satisfy the relations (6).
Then

4G

A= TG, 4rGai
c

d=— =2

Under the interpretation in the smooth topos Setﬂ‘w,
the infinitesimal ¢ € D at the stage (A = C®(R™)/I
is a class of smooth functions of the form o(a) mod I,
where [o(a)]? € I [3, p.77].

Consider the properties of the Gédel-Deutsch multi-
verse at the stage A = (C*°(R)/(a*) ¢, where a € R.
Obviously, it is possible to take an infinitesimal of the
form o(a) = a?. The Multiverse at this stage is a 5-
dimensional hyperspace. This hyperspace contains a
foliation whose leaves are defined by the equation a =
const. The leaves are parallel universes in the hyper-
space (environment) R}, with the metric ¢(¥)(¢A) =
ggi)(%a) defined by Egs. (5), (7). The density of dust
matter p = po + o(a) grows from the classical value
po ~ 2-10731 g/ecm?® to +o0o as @ — +oo. The cos-
mological constant also grows infinitely to —oo. Hence
the parallel universes have physical properties different
from those of our Universe.

At the stage (A = (C*®(R)/(a?), o(a) = a and
p=po+ o(a) = —o0 as a — —o0, i.e., p is not physi-
cally interpreted (we have “exotic” matter with negative
density).

Finally, at the stage 1 = (C>*(R)/(a) all p(a) =
d(a) = A(a) = 0, i.e., we have the classical G6del uni-
verse.

5. The Friedmann-Deutsch Multiverse

Now we consider Friedmann’s closed model of the Uni-
verse, which, in the coordinates (z°,x,0,¢), 2° = ct,
has the following metric:

ds?® = ggz)dxidxk
= A2dt* — R?(t)[dx? + sin? x (d6? + sin® 0dp?)]. (8)

This metric satisfies the Einstein equations with the
energy-momentum tensor of dust matter

2
Tix = ¢ pujuyg,

6Here (f1,..., fr) is an ideal of the ring C°°(R™) generated
by the functions fi,...,fx € C*(R"™), i.e., having the form
Zle gifi, where g1, ..., gx € C°°(R"™) are arbitrary smooth func-
tions.
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under the condition that

) M
304y _ _
pR’(t) = const = 52" (9)
Ry .
R = Ro(1 — cosn), t= T(C—smn), (10)
2GM
Ro =2, (11)

where M is sum of body masses in 3-space [9, p.438].
Let

G=k+d, de D, (12)

where k = 6,67 - 1078 [CGS] is the classical gravita-
tional constant.

At the stage 1 = (C*°(R)/(a), d(a) =0, i.e., we
have the classical Friedmann Universe.

Consider the state of the Friedmann-Deutsch multi-
verse at the stage (A = (C°°(R)/(a*), where a € R.
It is obviously possible to take an infinitesimal of the
form d(a) = a®>. The Multiverse at this stage is a 5-
dimensional hyperspace. This hyperspace contains a
foliation whose leaves are defined by the equation a =
const. The leaves are parallel universes in the hyper-
space (environment) R}, with the metric g (¢A) =
91(2) (z,a) defined by Egs. (8)—(11).

The radius of a “Universe” with the number a =
const and the dust density following from (9) is equal
to

oM )
= _— 1 —_ S
R 33 (k+a”)(1 —cosn),

27mc? 3
= 1——+d .
rla) 16k3M2(1 — cosn)3 ( k (a)>

So, with d = a?, the radius of parallel universes with
numbers |a| — +o0o grows to +oo. The dust density
p(a) decreases, then p(a) crosses zero and becomes neg-
ative, p(a) — —oo as |a] — 4o0. All this tells us that
the parallel universes can have physical characteristics
which are absolutely different from the characteristics
of our Universe.

6. Transitions between parallel
hyperspaces

A change of the stage /A into the stage ¢B is a mor-
phism between the two stages,

(B % (A
When (A = (C>®(R™) and ¢B = (C*°(R™), the transi-

tion ® between the stages gives the smooth mapping
a = ¢(b).

Hence if the constants are G = G(a) and A = A(a)
at the stage ¢A, then we have at the new stage (B:
G = G(¢(b)) and A = A(¢p(b)). In other words, the

¢:R™">5b—aecR"

dependence of the physical constants on the extra di-
mensions is transformed into their dependence on some
extra field ¢. This fact can be useful in connection with
the investigations concerning the introduction of an ef-
fective gravitational constant depending on some scalar
field (see, e.g., [10]).

7. Conclusion

As follows from Sections 4 and 5, a source of multiplicity
of objects and the appearance of parallel hyperspaces
are the physical constants (such as p,A,G). A reason
for this is the following. Traditionally we consider the
physical constants as real numbers. It means an im-
possibility of findings their exact values. So we must
assume that a physical constant is K = Ky + d where
d is an infinitesimal. The latter gives multiplicity.

References

[1] D. Deutsch, “The Fabric of Reality”, Allen Lane, Pen-
guin Press, 2000.

[2] A. Kock, “Synthetic Differential Geometry”, Cambridge
Univ. Press, 1981.

[3] 1. Moerdijk and G.E. Reyes, “Models for Smooth In-
finitesimal Analysis”, Springer-Verlag, 1991.

[4] AK. Guts and E.B. Grinkevich, “Toposes in General
theory of Relativity”, gr-qc/9610073.

[5] P.A.M. Dirac, “Principles of Quantum Mechanics”,
Nauka, Moscow, 1979.

[6] A.K. Guts and A.A. Zvyagintsev, “Solution of the vac-
uum Einstein equations in Synthetic Differential Geom-
etry of Kock-Lawvere”, physics/9909016.

[7] A.K. Guts and A.A. Zvyagintsev, “Interpretation of in-
tuitionistic solution of the vacuum Einstein equations
in smooth topos”, gr-qc/0001076.

[8] K. Godel, Rev. Mod. Phys. 21, 447 (1949).

[9] L. Landau and E. Lifshitz, “The Theory of Field”,
Moscow. Nauka, 1973.

[10] J.P. Mbelek and M. Lachieze-Rey, “A five-dimensional
model of varying effective gravitational and fine struc-
ture constants”, gr-qc/0205089.



