ISOTONIC MAPPINGS OF A NONCONNECTEDLY ORDERED
EUCLIDEAN SPACE

A. K. Guts UDC 513.82

We shall consider the n-dimensional Euclidean space ER (n = 2), in which there is defined a noncon-
nected ordering, invariant with respect to parallel transfers,

1. We introduce an ordering geometrically in ER, such that with each point z = E* we associate a set
P.< E*, with the conditions: (@) r =P ; (b) if y=P., then P,< P,; and (c) for x = y we have Py # Py. Then,
writing the relation y= P, as x =y, we obtain a partial ordering in ET,

The invariance of this ordering with respect to paralle] transfers is understood as follows: if t ig a
parallel transfer (shift) and t(Py) denotes the image of the set Py under the transfer t, then for any point z = E*
and any shift t, we have the equation t(Pg) = Ptx)-

Thus, an invariant ordering is defined by fixing some set Pe.
We shall fix the point e throughout this article, and shall write P instead of Pg.
Moreover, P-={r=s E":z < e}.

If the set P is nonconnected, then we call the ordering nonconnected. If the ordering is connected, then
the set P is connected. We call a space on which there is defined a nonconnected or a connected ordering, re-
spectively, nonconnectedly or connectedly ordered.

The problem with which this article is connected is the study of one-to-one mappings of E? onto itself
which preserve a nonconnected invariant ordering defined in ER, By the preservation of an ordering, we mean
the following property of the mapping f: E® — E"; for any point z= E*, we have the equation f(Py) = Prixys
where P is the ordering we are considering.

Mappings with this property are called P-isotonic or simple isotonic (if this is understood to be with
respect to some ordering).

2. The nonconnected ordering P which we are studying satisfies the following conditions:
A) P={e} UQ, where Q is a closed connected set with interior points, not containing the point e,

B) P lies inside some convex cone with acute vertex e (an "acute vertex" means the cone does not contain
a straight line).

C) There exist n rays Ly, Ly, . . ., Ly, which do not lie in the same hyperplane, originating from the
point e, such that for any 2= Q,

where t is a shift with the property t(e) = x.
The basic result of this article is:

THEOREM A. Any isotonic one-to-one mapping of the Euclidean space ER (n = 2) onto itself is an affine
transformation, excluding the special case when the ordering is defined by a quasicylinder (see Sec. 4). How-
ever, in this case we also give a complete description of the mapping.

Of course, we are assuming that the ordering satisfies conditions A), B), and C). If we consider only
continuous isotonic mappings, then we need not require Q to be closed or connected.
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3. Everywhere in this article, isotonic mappings are assumed to be homeomorphisms of E% onto itself,
since we have the following theorem of A, D, Aleksandrov:

THEOREM A', If the ordering satisfies conditions A) and B), then any isotonic one-to~one mapping of ER
onto itself is a homeomorphism,

This theorem has not been published in this form, but ifs proof essentiaily repeats the proof of Theorem
4 in [1]. Instead of the bounded sets considered in [1], it is sufficient to consider all possible nonempty inter-
vals P.N\ Py

4, In terms of the theory of commuftative topological groups, Theorem A is concerned with isomorphism
of isotonic mappings (see [2]). Isotonic homeomorphisms of a connectedly ordered affine space (a commutative
group) were studied by Aleksandrov [2], An example of a connecfedly ordered noncommutative Iie group, for
which a theorem similar to Theorem A is true, is given in [3].

5. From the point of view of relativity theory, Theorem A means that the Lorentz group may be obtained
as the corollary of a causality principle, which does not assume cause-and-effect reciprocity of events in the
microcos mos.

These questions were first touched upon in [4-6].

1, Notation
The basic terminology and notation were given in the introduction.,
Throughout this article, P denotes an ordering satisfying conditions A) and B).

(1.1) We denote the points of the space E™ by lower-case letters. If A is a set, then we denote by ﬁox, A,
and 9A, respectively, its interior, closure and boundary.

Let M be a set in EP, Denote by M, the set obtained from M by using the shift t such that t(e) = x. More-
over, set M = M,.

If =z, y€E", then [%, y] denotes the interval of the straight line with ends x and y, and (z, ¥} =1z, yiMae. yh
Finally, |x —y!l is the Euclidean distance between x and y.

Henceforward, Iz, y) and IT(x, y) denote, respectively, the straight line passing through x and y, and
the ray starting from the point x and passing throughy x = y).

If z=E", and r > 0 is some number, then we denote by B(x, r) the open sphere with center x and radius r.
(1.2) Since we are only interested in homeomorphisms, we may assume that Q = ((,OQ), since this dees nof
reflect on Theorem A. Clearly, if P is an ordering, then P ={e} U (QO) is also an ordering,

(1.3) We order the points on the ray I*(x, y), where x # y, in the following natural way; we say that v =
w, if v, wel™z, y) and Ix —v]i=Ix—wl

(1.4) We note that we only need a metric for simplicity of notation, since instead of EM we may consider
an affine space.

2, Exterior Cone

(2.1) Definition 1, Set

C= U I (e, 1),

3:622
where Q is the connected part of the ordering P.
We call the cone C the exterior cone of the ordering P. Its vertex is the point e,

2.2) If x( is an interior point of the set Q, then there exists a ray I*(v, y) =l*(e, av), lying entirely inside
Q. Moreover, for some ¢ > 0 the cone

U 1" ,w)

wEB(y, )

lies entirely iné 0 <e<lv—yl.



This follows from condition A) and from the fact that P is an ordering, since if z Eé , then there exists
& > 0 such that Blz,, §) < Qc However, since P.<P, < Blzo, §), then denoting by t the shift taking e to Xg, W€
obtain Bli(zy), 28) = Q. Since Py, cP for v = Blx, §), it then follows that Blililxp)), 36)CQ° etc, There exisis
a natural number m such that

B{...t{zy)..),(m+DONBE{... t{zy) ...}, mE £ O

m

Clearly repetition of this procedure will give a sphere having nonempty intersection with its predeces-
sor. The required point v is equal to ¢(...t(z,) ...). The remaining part of the statement is obvious,

m

(2.3) LEMMA 1, P<=Z.

Proof. (@) If z=(Q and x is the limit of the sequence {xy}, where z.<=, then the sequence of rays { It (e,
xp}f converges to the ray It(e, x). Clearly, z=t*le, 2) and i(e, ) =C, ie., z=C.

(b} Let =< ¢, but suppose that the situation described in part (a) does not hold. Suppose that z ¢ (. Since

P.c P, there exists a sequence of points {z,}. z, < Q\é (m=1, 2, ...}, suchthat [x, — xmpyi! =1x ~e] and
%1 =X, Infact, if t is a shift taking e to x, then 2, = ¢(... ¢(z) ...), Clearly, {r,} ¢ C. Since the set C is closed,

o

there exists &€ > 0 such that the cone

]{g = U Z-l- (61 L‘)

veB(x.8)
has no common points with the cone C, besides the point e, Let z <= Q be a point such that r=1*(c, D\le, 3z) Cd
Set p =le —zl. There exists a number my > 0 such that & {x, ,2p) < Ke. Thus ¢ (M) (V5 (5m,. 2p) = &, where t is
a shift taking e into Xmy i.e., there exists a point y= (i) such that y = éxm(,ﬂ K. But X, ﬂ(:?z &, and therefore
KN meo == ¢, which contradicts the statement we have just obtained, Thus, in fact z=(.
Lemma 1 is proved.

(2.4) Clearly, we have the equation

U It(e,z)=2C.

x=Q

(2.5) LEMMA 2., The cone C is convex.

Proof, Suppose that the statement of the lemma is false, Then there exist points z, y=aC such that for
any ve=(z, y) we have v&C. Since C = C, there exists a point vo= (2, y)and a number & > 0 such that Blv,

edNC=92. Let p', ¢ = Q be points such that for points p, g lying, respectively, on the rays I*{e, p") and " (e,
q'), we have
Lp, g N Blvy, ¢) + 2, (1)

Without loss of generality, we may assume that p # p', g = '

IHip, p/)ycltle, p'), I*(q, ¢') =1*le, ¢') and I*(p, p)\le, p) = 0, 2

=1, ¢N\e, ¢)=0.

Consider the cone Cp. The ray M@, q‘)]p is parallel to the ray l+(q, q'), and thus intersects with the
cone

17 {e, w). 3)
'uGH(’oO,E)
If we now shift the cone Cp, along the ray *(p, p"), we easily find a point w<=1*(p, p') such that the ray
t(\) [see (2)], where t is a shift taking e to w, intersects with the cone (3). But ¢(A) = Q,, and the cone (3) lies
outside the cone C. Thus there exists a point @< ¢(A) such that ©&#C. But # =Q,, and since P, =P, then ¥ = Q.
Hence = C. This contradicts the ahove facts.
Lemma 2 is proved,

(2.6) By condition B), the exterior cone C has an acute vertex. Strictly speaking, we had the exterior
cone in mind in condition B).
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2.7) It follows from condition B) that there exists 2 hyperplane H passing through the point e, for which
we have
HAnQ=9, CNH={

We shall keep the notation H for such a hyperplane throughout this article. Moreover, let H be the

closed semispace generated by H containing the set P, and H- — E"\I*.

If Hy intersects with Q, then the set H.NQ is compact.

3. Line Ordering

(2.3) Definition 2, The ordering P is called inner-line, if there exists a ray Itle, zp) = Cu {e}, where

L& QO, such that any straight line ! parallel to the ray I* (e, xp) must intersect with the set Q ina ray, i.e., if
It e, Xy, then [0 Q is a ray.

~ Definition 3, The ordering P is called boundedly line, if it is not inner-line and there exists a ray It{e,
zp) = C, where zp< 0C , such that for any straight line [ parallel to the ray (e, xy), the set 1NQ is either
empty or is a ray (i.e., [N Q is either empty or is a ray).

The ordering P is called line if it is either inner-line or boundedly line.
In this section, we agsume that the ordering P is line,
{3.2) Let

P=E"\ | 0

e 0Qx
Then we may consider the family {P.: 2 < E"}, which realizes some transfer to a connected line ordering,

LEMMA 3. If the ordering P is line,* then P<= (-, where C~ denotes the cone cenirally symmetric to
the cone C with respect to the point e,

Proof, Let 2= D, Four cases are possible:
1) ze= 5‘;
9) z=dC\el};
3) zECUC
4y zeC.
The fourth case leads directly to the statement of the lemma, so we shall consider the first three cases.

Since z <= P, then for any point z such that ¢ = 5Q., we have x';‘ééz, i.e.,

z¢ U Q. 6)

e€9Q.

1) Therefore z=C. Let z= I*e, z) be the point in 8Q most distant from e. Such a point exists, since
I*(e, ) =Cu{e. Moreover, this ray must pass (see Definition 1) through some point yE(i Thus, the ray
I*(z, v)<I*(e, z), where z<ve&ltle, ) is such that I*(z, »)\{z} = é Let t be a shift taking the point z to e,
Then 4t(Q)=¢ and xEt(QO). But this contradicts (5).

2) Let x=0C\e}. Take a point v Qo Then by (2.2), there exists a circular cone K with axis L, and
vertex we<l(e, v), such that X = Q. Consider the spheres B(z, r{z)), where z< Lo, inscribed in K. Deuote by
z, the point such that r@zy > le —xl.

Set Ue, z)=1I*(e, 2) UL, L0I*(e, 2)={e}. Then the ray Ly, must intersect with 9Q. Let a= L, N0Q bea
point such that there are no points of 8Q on [z,, a). Clearly, |z, — al = r(zy >le —xl|. Since [z, a) = é, then
denoting by t the shift taking a to e, we obtain

e=gi(Q), z&= t(é).
But this contradicts (5).

*The lemma is also true for a nonline ordering.
¥No Eq. (4) appears in Russian original — Publisher.
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3) Let £ CUC~. We use the cone K introduced in 2), and also the ray L. The ray LZO must intersect
with 0Q, since L, — o [see 2.7)]. Let a= L, be the nearest point in 8Q to z;. Then (4, zy] = @ and more-
over, (a, zl < b, la — 2o} = rlzp) > le — zl.

If t is a shift such that t(a) = e, then

e=at(Q) and 2= 1((),
and this contradicts (5).

Lemma 3 is proved.
(3.3) In this section we shall prove an important lemma, which will be very useful.

Let I1 be some unbounded set containing the point e, lying inside the convex closed cone K with acute
vertex e.

LEMMA 4, If f:ER —E" is a homeomorphism preserving the family {II,: z = E"}, i.e., f(ly) = Ilf(x) for
any point z = E", then there exists a set iI' containing the point e and lying inside the cone K, such that II' de-
fines an ordering in EB, and moreover f(H}'() = H%(X), where z=E" is an arbitrary point, i.e., f is lI'-isotonic.

Proof, Let

no=1, V= M....0"= y M"Y ..

xS xe11(n—1)

I — G .

n=9

We show that iI' is the required ordering. Suppose not, i.e., II' does not define an ordering. Then there exists
a point zeIl’ such that II% is not a subset of the set II', Therefore, there exists a point y = M., which does not
belong to ii'. Hence we see that for any n=0, 1, ..., the point y #II™, and at the same time there exists m,

such that y= (™), Since z<lI’, there exists my for which we have ze ™). Thus z= ™ < ™™, But

it is easily seen that TI® cTI**V (k =0, 1,...). Therefore,
ye Hgng) = Hs(cmax(mo,ml))’
max(m,,my)) max{mg, my)+1)

re chml) < Ho(c -1 ,

(max(mgy,my)+1)

ie,yenl . But this contradicts the fact that y &I for anyn=0,1,... .

This contradiction shows that II' defines an ordering on E™, Since we constructed II' from the family
{Il. : z= E*} , using only set-theorectical operations, clearly f preserves the ordering II',

Lemma 4 is proved.

Thus using Lemma 4 we may go from a given family of sets to one which defines an ordering in E™,
Moreover, the property of invariance with respect to a particular homeomorphism is preserved for this family.

(3.4) Denote by ord (I) the set iI' in Lemma 4, obtained from the set iI, satisfying the conditions of Lem-~
ma 4.

If I defines an ordering, then clearly ord (II) = II, If however II does not define an ordering, then ord (iI)
must define one,

It is also easily seen that if Il is a linearly connected set, line with respect to the ray L, then ord () is
line with respect to the ray L and is linearly connected,

(3.5) If P is a line ordering with respect to the ray L, = {7 (e, x;), then consider the following ray:
Ly = (L(e, m) \ Lo) U{e}-

LEMMA 5, Let P be a line ordering with respect to the ray L;. Then there exists a linearly connected
ordering P' which is line with respect to Ly; Ly = P’; and any P-isotonic homeomorphism is P'-isotonic.
Moreover, P’ =C.

Proof. (a) The set P [see (3.2)] is line with respect to L.

In fact, let z=D. It is sufficient to show that L;.cz P. Suppose not, and lety # z, y = Ly, but y& P. Then
there exists z for which e=dQ. and y=0.. Let & > 0 be a number such that B(y, 8) = Qaz. Since P is line with
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respect to Ly, then Ly, = Q.. Thus z= Q.. But re P, ie., there exists a point ve Bz, §/2), but v £ .. Then

v e Lo, where w e Bly, 8) is some point, Hence it follows that we (., and therefore since the ordering P is
line, v =@, . Contradiction,

(b) Ly < P, In fact, since e =P, we obtain the required result using the methods in (a).

(c) Denote by S the part of the set P which is joined to e by some path lying in P. The set § is nonempty,
by part (), and from Lemma 3, satisfies the conditions of Lemma 4. Then ord (8) is a linearly connected
ordering in E® which is line with respect to Ly [see (3.4)].

Clearly, P' = ord (S) is the required ordering.
Lemma 5 is proved.

(3.6) LEMMA 6. Let the ordering P satisfy conditions A}, B), and C). Then there exists a convex cone K
with acute vertex e and interior points, such that any P-isofonic homeomorphism f satisfies the equation

HEKD) = K.

Proof. Let L, ..., Ly be the rays in condition C). Clearly, the ordering P is line with respect fo any
of these rays. Set Li = (L {e, z)\ L) U{e}, where z;= Li(z;is=e) is an arbitrary point on L.

If P' is the ordering obtained from P in Lemma 5, then P' is line with respect to any ray Li. Moreover,
LicP (i=1,...,nand P"=C". Denote by Kthecontingency ofthe set P! at the point e, Clearly, L7 © K
i=1,...,n. By Theorem la of [2], thecontingency K is a convex cone with an acute vertex. Therefore, K
has interior points. Since P'<C~, P! satisfies the condition of Theorem 1 of [2]. Thus K coincides with the
union of all directed curves (see [2, p. 5]) starting from e. Hence it follows that any P-isotonic homeomor-
phism f satisfies the equation £(Kx) = Kfx)-

Lemma 6 is proved.

4, Proof of Theorem A

{4.1) Let E be some hyperplane, and 1l a vector {or a ray 1) not parallel fo E.

Definition 4, The displacement dpj (or dry) is a mapping satisfying the following conditions:
1) dgy (or dg1) is a homeomorphism of E® onto itseif;

2) on each hyperplane parallel fo E, dp] (respectively, egy) is a shift;

3) dgy (or dg1) takes intervals (rays) equal and parallel ol (respectively, 1) into the same intervals
(rays).

Definition 5. The quasicylinder Q(E, 1) is a set M satisfying the conditions:

1) there exist hyperplanes E, E,, . . ., parallel to E, where E;j,; is obtained from E; by a shift to the
vector 1, and moreover,

M=UlM,U{MNE)], 6)
i

where each M; is a cylinder formed by open intervals equal to I (as vectors) with ends at Ej and Ej.;

2) M does not admit a representation (8) with the same hyperplane E and a vector I'parallel to I but
greater than 1.

The definition of the quasicylinder Q(E, L), where L is a ray, is obvious. We have taken these definitions
from [2].

4.2) THEOREM A. Let P be an ordering in ER satisfying conditions A), B), and C). Then any P-isotonic
homeomorphism f: ER —EDR jg either an affine transformation, or P is a quasicylinder and f is of the form
f=Tecdio.. . ody, N

where f; is an affine transformation, and dj is dEili or dg;1;- Moreover, it does not maftter in which order the
d; appear.
i

Proof, Let P be an ordering satisfying condifions A}, B}, and C). By Lemma 6, any P-isotonic bomeo~
morphism f preserves the family of sets {K.:z<= £"}, where K is some closed convex cone with an acute vertex,
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Moreover, K+2, Clearly, K defines a connected ordering in ER. Then from Theorems 3 and 4 of Aleksandrov
in [2], the homeomorphism f is either an affine transformation, or may be written in the form

f="foeDyo...oDpy, (8)

where f; is an affine transformation, and Dj is dEiIi or dg;1;- Moreover, it does not matter in what order the

displacements Dj appear. It remains to show that in the case when f is of the form (8), P is a quasicylinder
and f is defined by formula (7).* However, this situation was considered in Sections 6,3-6.8 of [2] in sufficient
detail, Moreover, we do not need the assumption on the connectivity of the ordering in Aleksandrov's argu-
ments. Therefore, we see that (8) implies that P is a quasicylinder,*

The theorem is proved.

I am deeply indebted to A. D. Aleksandrov, who set the problem and greatly furthered my studies.
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A CATEGORY OF PARTIAL RECURSIVE FUNCTIONS

A. N, Degtev UDC 517.11:518.5

Introduction. In [1, 2], the author studied the concept of F-reducibility of one partial recursive function
(p. r.f.) to another. We recall that f; F-reduces to f; (f; = f;) if there exists a general recursive function (g.r.
f.) g such that £, = f;g (i.e., for every x ecither neither side of the equality is defined, or both sides are defined
and equal). It was noted that this notion is closely related to m-reducibility of computable sequences of pair~
wise-disjoint recursively enumerable (r.e.) sets. At the same time, every p.r.f. f can be viewed as a numer-
ation of the corresponding set NU{o}, N=1{0, 1, ...}, where it is understood that if f() is undefined then in fact
fix) takes some special value o, ® €N. In numeration theory [3], the category of numerated sets has been
studied in detail. In this paper the category # of p.r.f.'s compatible with F-reducibility is also considered.

We denote by rng f and domf the range and domain of definition of f (in the usual sense). Let Rngf be
rogf if domf = Nand mgfU{e}ifdomf = N. If A=N, then A=N\4, j1(4d) ={z: f(z) = A}, f(A)={f(z) :z= A},
If domf, # N then o =Rngf;, and

F (Rng fo) = {z: fx) =g fo V flz) = o).
If A=N, then we write | Al for the cardinality of A and f34 for the function f, such that f,&) = f&) if z=4 and
fy&) is undefined otherwise.
.The objects of the category J are all the p.r.f.'s. If £, and f; are two objects, then the natural inclusion
p:Rng f; —Rng f; is called a morphism from f; to f; if there exists a g.r.f. g such that f; = f;g. We note that

there can only exist one natural morphism from f; into f;, and in order for one to exist it is necessary that
Rng /o = Rng f;. More precisely, the existence of a morphism from f; to f; is equivalent to F-reducibility of f,

to fi'
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