CHRONOGEOMETRY OF GODEL AND DE SITTER MANIFOLDS
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We consider a four-dimensional, elementary (i.e., diffeomorphic to Euclidean space RY) Lorentz mani-
fold V4, On V! it is possible to introduce coordinates x’, x', x?, x® in which the Lorentz metric g is given by
the differential form

P
ds? = g5 (20, 21, 2%, o°) dx'dz”.
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An isotropic cone 6x0 at the point zp= V* is a cone lying in the tangent space V§;0 to V* at the point %y, each

vector ¢ of which satisfies the equation

gxo (gy E) = 07

or in coordinates:
3
ik
2 g (h, 23, 23, 25) B8 =0,
k=0

where x, = (x§, x3, x3, x}).

To the cone éxo we assign a subset Cx, of the manifold V! as follows: a point ze Cy, if and only if it
satisfies the equation

3
3, g (ah ab o8, o) (2 — ) (&% — 58) =0,

2 3

If x%, x!, x?, x3 are considered as affine coordinates, then Cy is a cone in V4, Let f: V! — V* be an arbi-
trary differentiable mapping. We say that f preserves the family {C.: z = V% if the following condition is satis-
fied:

f(Cx) = Cf(z). (1>

It is not hard to verify that in this case the differential df of the mapping f preserves the isotropic cones Cx,
ie.,

(df),(Cx) d= C;(:r,). (2)

The converse assertion is, in general, not true, However, if in the coordinates xo, xi, Xz, % fis given by an
affine transformation (is affinizable}, then Eq. (2) implies Eq. (1).

It is easy to demonstrate the validity of the following assertion.

LEMMA. If Gy is an r-parameter group of motions of the manifold (V%, g) which is affinitely represent-
able in the coordinates x9, <!, x?, x* (i.e., each motion p =G, is affinizable), then Egs. (1) and 2) are equiv-

alent for any motion ¢ =G,.

A standard problem of chronogeometry consists in determining mappings f: V¢ — V* satisfying a condition
of the form (1). Differentiability of f is not required, and the condition of continuity is often given up as well.
Knowledge of the group of motions of a Lorentz manifold makes it possible to establish its geometry. The con-
verse problem is also interesting: find a group of motions without assuming the differentiability of its trans-
formations (the usual approach leading to the concept of the Killing vector) and dealing only with isotropic cones
or, more precisely, with the "cones" Cy; i.e., the following question is posed: is it possible to construct the
group of motions Gr of 2 manifold V* assuming that each transformation p =G, satisfies condition (1) ?
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The lemma shows that this approach is justified at least for groups of notions admitting affine represen-
tation. For example, solvable groups of motions G; acting transitively on V3 (see [1]) are such groups.

Definition, Suppose that a group of motions G, is affinizable in the coordinates {x1}. In this case a map-
ping preserving isotropic cones is understood to be a bijection f: V! — V* satisfying condition (1).

THEOREM A (Aleksandrov and Ovchinnikova [2]). Any mapping preserving isotropic cones in a Minkow-
ski world

ds? = dz** — da¥’ — dz® — dz®

is a superposition of an inhomogeneous Lorentz transformation (i.e., a motion) and a similarity transforma-
tion.
We formulate the main results of the paper.

THEOREM 1, Any homeomorphic mapping of the Gddel universe [3, 4]

ds® = a? (d:zc”2 — et —%— e — de® 1 Zexldx(’dxz),

where a = const # 0, which preserves isotropic cones is a motion.

The group of motions of the Godel manifold has type G,VI; in the classification of Petrov [1} and can be
represented by affine transformations of the form

To=2ta; El=z+B; T¥=2%P+y; Z3=2%+3, 3)
where @, 8, v, 6 are parameters. This group acts simply and transitively on v

THEOREM 2. Any homeomorphic mapping of the de Sitter universe [3]
ds? = de® — &#*° (d;c12 +da? 4 dxaz),

where k = const, which preserves isotropic cones is a motion [5].

The group of motions of the de Sitter universe Gy in the coordinates {x1} cannot be represented as a sub-
group of the group of affine transformations.

In the coordinates
y® = exp(—kz?), y*=Fkz* (a=1, 2, 3) )

the metric of the de Sitter universe bas the following form:

ds? = ('k_:ﬁ')z (a?y(’2 —dy —dy” — dyaz), (5)
and the group G, consists of transformations of the form
1,0...0 0
=29 _ Jurlg ) >0
o W)\

where U is an orthogonal matrix, i.e., G; becomes affine in the coordinates {yi}.

The group G; contains a simply transitive subgroup GyVI which becomes affine in the coordinates (4).
Therefore, the cones Cx in the Gddel and de Sitter universes are obtained by "transport" of the cone Cx,,
where x, is a fixed point, by means of the noncommutative group G,VI; in contrast to the Minkowski world,
where "transport" is realized by a commutative group of transiations.

The geometry of the Minkowski world is flat, the de Sitter universe has constant curvature, and the
Godel universe is essentially curved.

From the point of view of the theory of relativity Theorems A, 1, and 2 bespeak the fact that the Min-
kowski, Godel, and de Sitter geometries can be determined by knowledge only of the law for the propagation of

light.



Let
K - {” =Vhui>0, izz;o gun () (' — o) (" — ') >0}U{:c},
Ky = {ue Viiu® <0, i:2=0 g0 (@) (v — 27) (u* — %) > O}U ).
Then the following result holds.

THEOREM 3. The sets of the form Ki(\Ky, where ze Ky, andx, y are arbitrary points, form a basis
for the topology of the Godel and de Sitter universes.

The proof of Theorem 3 is essentially no different than the proof of the analogous result for a Minkowski
world [6]. In the case of the de Sitter universe it is necessary to go over fo the coordinates (),

The family of sets {KJ :ze V*} inthe case of the de Sitter universe defines an ordering in the sense of
the paper [7]. In [7] it is shown that any mapping preserving this ordering is a motion. There is no analogous
ordering in the G&del universe,

1. Proof of Theorem 1, The cone Cy is given by the equation

_);: gn(®) (@ — &) (& — ) =0

T, 0

or

(2° — 2 — (& — 2y — 6™ (a2 — 2P — (2% — 20)? + 267 (20 — 5) (a® — 29 = 0, @©)

1

where (z9, z!, z?, 2%) are the coordinates of the point z.

We further identify V! with RY. We denote by H%(a) the hyperplane in R% defined by the equationx? = a =

const. In each hyperplane H?(z}) we have the family of cones
8 (2 2%, 2%) = {(a% 2, 22, 1) & R*: (2° — 2°)* — (2 — 2*)'—(*—2%)* =0},
where ze=H*(s%). In the cone S(z§, z}, z3), z,cH?(z2)> we can choose four lines in general position (i.e., no
three lines lie in the same two~dimensional plane) Zﬁ*o A=1,2,3, 4. Let ze= A%(z}) and let t be a trans-
lation such that t(z)) = z. We set ZA = § lA} A=1,2, 3, 4. In H (zo) we have four families of parallel lines
{z }A=1,2,3,4). By Eq. (1) and
S u, ®)NS (2t )=l =1t =C,0NC, zel

we see that f(lA is a line in RY, Further, it is easy to verify that the parallel lines lA and lA (z * u) are
mapped onto parallel lines, and the two-dimensional plane spanned by each pair of lmes {ZA ZB} A = B, is
mapped onto a two-dimensional plane. This implies that the lines f(lA) A=1,2, 3, 4) are in generai position
and f(H?(z}) is a hyperplane (see [2]).

4 , 4
Let D, = U I, Dix :A!If(l;‘). Then £(D;) = D (), and hence f is affine on H2(z}) by Theorem 1 of [8].

We now consider the two-dimensional plane
Plab) ={z=R': g =q, 23 = b},

where a, b are arbitrary constants, On the plane P(zf)z%) we have the family of 1-cones
F(z% 5% = {(w“, zh, 2% 28) & R* 1 (2 — )2 — L o (o — 22 + 267 (o° — 2%) (2% — 2%) = 0}, se P(zkd).

Tgus is a pair of hnes 1ntersect1ng at the point (z°, zo, z?, zo) and lying in P(Z()Zg) We denote these lines
by 1, &, where z= (2", 75, 2°, 28) & P (z23). In the plane P(z}z}) we obtain two families of parallel lines. Since

P =18 =F (2, A)NF (1, u?) = CuNC, ze Lo (B =58), it follows that £(1B) (B =5, 6) is a line. Hence, f[P(ziz})]

is a two-dimensional plane. The plane P(zoz%) intersects the hyperplane H?(a) along the line l( 01 )+ Since
Z)sZpythyZy

for any @ the image fH2 (@) is obviously a hyperplane, and f(H2(a)) is parallel fo F(H2 (@) (@ = a"), on the plane

P(ziz3) we obtain a third family of parallel lines {17 :z e P(2128)}. Thus, [ maps P(z z4z3) onto a plane and the



three families of parallel lines {If:z& P (zl23)} (A = 5, 6, 7) onto an analogous family, This means that f is
affine on P(z’oz ) [8].
A

Let zp=R*, and let Ly (A =1, 2, 3, 4) be distinct lines such that Lfoc H*(z3) (B =1, 2, 3), L}, L, =
P(z3z3). There exists an affine transformation g of R* onto R possessing the following properties:
g(f @) =20, g(f (L)) =1Li, (A=1,2,3,4).

Then the mapping go f maps H? (Zo) affinely onto H? (zo) and P(zozo) affinely onto P(zozo), and (gof) (LZ ) = LA
(A =1, 2, 3,4). By choosing the lines Lﬁ* (A =1, 2, 3, 4) as new coordinate axes, we see that in these coor—
dinates ge f is given by an affine transformation, Hence, f affinely maps R* onto R4, i.e.,

fiz) = i atz® +at (i=0,1,2,3). M
=0

Since there is the equality
,‘f(C,) = Cf(:)a

we must also have in addition to (6)
P () — P @F — [/ @) — I @) — 57 [P (@) —PEAP—1P@)—F @)+
4 2¢O (2) — P @] [P @) — F @] =0. @®)
From (7) and (8) we obtain

i, . \
(ad)* — (ag)* — °) 29 exp (22 aiz® + 2a1) — (a2)® + 2adal exp (hzo aiz® + al)] (2® —2°)2 _
] =0 =

3

B R R Gl e (22 st + 20 ) 4 (o) — 2atafexp 3 ol +0*) | G — 1y

L. k=0 k=0
) . . .

— | —(ad)*+ (a2)* + (&) op (zZa +2a‘)+(a )* — 2a3a3 exp (hzoazzwaﬂj(xz_zz)z_
. k=0 = J

[~ @+ e (23 o 20) ¢ Gy et (3 ot ) | 2 - 0+

h=0

aiz* + .2a1> — 2adad -+

k=0

+ [Za.,a=l — 2alal— aoa, exp (2 }3]
+ 2(ala? + alal) exp ( > alz* 4 al) ](a:" —2°) (2 — 5% +
3+ [Zaoal — 203a} — alad exp (2 éo a}‘z’:‘ + 2a1) — 2a34% +
20+ ated)oxp ( 3ol +01) | (- (=) +
+ [2a0a, — 2ala} — ala3 exp (Zéo ailz® 4+ 2a1) — 2433 +
2l + afad) exp (3 o +) (@ —2) (=) +
+ [2a1a, — 2a}al — alalexp (2 3 alz* 2a‘) — 2alad -

k=0

+2(a1‘1= al)exp(Zaz"-{-a) .('l—zl)(x’—zz)-l-

+ [ 2a%a3 — 2ajaj — @303 €xp (2 kgo ajz® + 2a1~) — 2a%3 1

+ 2 (afal + ala}) exp (éo axz® + a‘)] (&t —2) (® —2%) +
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3
4 [2agag — 2akal — aZa}exp (2 > aha® + 2a1) — 2a3a3 -
izo /

3 '9}
+ 2 (ala} 4 alal) exp ( > ait a,l)] (2~ (z*—2%) =0 {
e
Comparing (9) and (6), we obtain*
h=at=a}=0, af=0]=a)=10a;=0, 10)
a® = af = a2al = afal = afa} = ajal =0,
(a9 — (a2 =1, (a)*+(ad)*=1, (af)'=1. an

From (10) and (11) we obtain

Hence

(ag)? = ()" = (aB)* =1,
(a2)?exp 2¢* =1,
alalexpa’ = 1.
It is not hard to see that a} = 1, Leaving aside the mappings xA - —xA A =0,2,3), we obtain
ad = al =ad=1, a} =,
i.e., we have obtained a transformation of the form (3). This means that f is a motion. The proof of Theorem1

is complete.

2. Proof of Theorem 2. In the coordinates (4) the metric of the de Sitter universe can be written in the
form (5). Hence, V* is identified with the half space {y e R*:y° > 0}, and the cones C, are given by the equation

(0 — 292 — (g — 2)2 — (y? — 292 — (3 — 2%)2 = 0,

In [9, Theorem 2] it is shown that in this case a mapping preserving isofropic cones can be written in
the form

10...0 0
N o o
0 ¥

where U is an orthogonal matrix, and A >0, «, 8, y are parameters.

All these transformations form a 7-parameter group G; which is easily seen to be the group of motions
of the de Sitter universe. The proof of Theorem 2 is complete.
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*Conformal transformations of the type (7) are all trivial, i.e., they reduce to motions.



