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In this article we give necessary and sufficient conditions which assure that a bijective map of a Lorentz

* *
manifold (Ty 5 and Ts 4, four~dimensional Einstein spaces) is a motion. The main point here is that we do not
require the map to be differentiable (this condition is needed in the classical definition of a motion).

We consider a four-dimensional Lorentz manifold (V, g) which is elementary, i.e,, diffeomorphic to

Euclidean space RY, We can introduce global coordinates x!, x%, x°, x* on V in terms of which the Lorentz

metric g is given by the differential form
ds? = 2 g (2%, 22, 28, z%) dzidzh.
ik

An isotropic cone éu at a point u=V is a cone confained in the tangent space V,; at u such that every
vector £ in C, satisfies the equation
gu(gs E) =(,
or, in coordinate form,

2 gin (U3, u% v, ut) Bikk =0,
ik

1 2

where u = !, u?, u®, uh.

To the cone éu we associate a subsef Cy of the manifold V as follows. A point ze ¢, if and only if x
satisfies the equation

12,2 gin (U, U3, u®, ut) (2t — ud) (b — uPy = 0. {1}

Let £: V— V be a motion of V. Then f preserves isotropic cenes, i.e.,

(@) (C) = Cyuy 2)
for every point e V. It is easy to see that if f has the property that

f(cu) = Cf(u) (3)
for every point u =V, then f satisfies (2). The converse, in general, is false,
However, we do have the following lemma.

LEMMA, If Gy is an r-parameter group of motions of the manifold (V, g) which is affine in the global
coordinates {x'}, i.e., each motion j= @&, is an affine transformation, then Egs. (2) and (3) imply one another.

The following question arises naturally: Could not one define a Lorentz motion of a manifold as a bijective
map f:V — V satisfying condition (3)? Such an approach makes it possible to remove the requirement that f be
differentiable and involves only preservation of zero lengths, and not preservation of derivatives (as is cus-
tomary in defining motions).

However, it is easily seen that this approach to defining motions extends only to those homogeneous
Lorentz manifolds which admit coordinates with respect to which the group of motions is affine, Moreover,
the family of "cones" {C,:u =V} is constructed from a family of isotropic cones {7, : us V} , but this construc-~
tion is covariant only with respect to the group of affine coordinate transformations. Therefore, our approach
is closely related with the problem of choosing privileged coordinate systems with respect to which the group
of motions is affine. The existence of privileged coordinate systems depends on the properties of the manifold
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in the large [1, p. 12], and for this reason our approach is based on deeper principles than might appear at
first glance. This remark takes on physical meaning if we recall that in and of itself, the principle of general
covariance is not the expression of any physical law {1, p. 13], whereas the choice of privileged coordinate
systems is related to the attempt to express physical laws in their simplest form [2, p. 122].

Finally, since we have to establish the differentiability of the map f considered, it suffices for this to
choose a single coordinate system from an atlas of charts.

Definition. Assume that a group of motions of a manifold V becomes affine in the coordinates {xi}, In
this case, a map preserving isotropic cones is understood to be a bijection f: V — V satisfying condition (3).

In this article, we study bijections which preserve isotropic cones in Einstein spaces of maximal mobility
satisfying the equations

Ry = %8u
for some constant n # 0,
Such manifolds are known to beloag to one of three types described by Petroff [3, p. 249]:
1) the space ’f‘l, a space of constant curvature;
2) 'f‘z,s, a space of Petrov type II with a five-member transitive group of motions;
3) :Ik‘3 ,4» a space of Petrov type III with a four-member transitive group of motions.
We studied the first case {(a De Sitter manifold) in [8] without considering the global topological structure.

* * * *
Therefore, in this work we only study the other two cases, the spaces T 5 and T; 4. Topologically, T, 5 and T3 4
are homeomorphic to R? [3] and they are therefore elementary.

*
In coordinates with respect to which the group of motions is affine, T, ; is defined as follows [4, p, 214]:
ds? = — e20xt (2dz)dx® 4 dz?) + ee—ox*dz®® — da?® @

with motion group Gj

2
o
-1 &g .1 505 9 4 5¢p.3
z = ozl —oe st — e P

-2 2 20

2 = e"*5at + et 4 ay (5)
72 =e 1% | a,

- 2

2t =2t ——ay,

where w =vn/3(® >0), e =+l and a; (=1, 2, 3, 4, 5) are arbitrary real parameters,

*
For the space T3 4 we have correspondingly {4, p. 218]:
ds? = e—20%* (e, dalda® — da®®) + 2e,e0%dz%ds® — -—;—e“’x"dﬁ" — dz?,

(6)

0 =TVn/3, &, ==1, g,=:=1

and the group G, is given hy

z, = ezl -

1
T, =Bz y l .
Zy,— e~?Pa3 Gi’
7, =t -Blo |

where o, 8, v, 8 are arbitrary real parameters.
We now state the main resulf of this work.

THEOREM, Any bijective map of the spaces ’I’f‘z )5 or ’}:‘3,4 onto themselves which preserves isofropic cones
is a motion,

This theorem should be regarded as a generalization of a theorem of Aleksandrov and Ovchinnikova [5] to
the case of twisted Lorentz manifolds,
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1. Proof of the Lemma

(1.1) Let
T =7, a2, 2t 2 = 3 airt -l 8}
R=1

be a transformation of the manifold V belonging to the group of motions, If the map in 8) has property (2), then

gx(7t, 5% o°, n9)drda® = g, (', u?, ¥, ut)da'ds’ = 9
or
T1 T8 Ty T ik ;
gun (!, 2%, 4%, 1) = gnm (81, 02, 1%, U,

2 2

where @!, u?, u®, u*) and (!, uv?, u’, u?) are the coordinates of the point v =V after and before application of
the motion corresponding to (8). Consequently,

0 = gam (U, 43, ud, uf) (20 — un) (z™ — um) = g, (U}, 2%, &%, u*) apal, x
X (& — ur) (2™ — um) = gy, (u, u?, unt) (7 —ﬂ) (=" — ﬁh), ao)

i.e., we obtain Eq, (3). Consequently, assume Eq, (3) is satisfied, i.e., (10} holds., Then {10) immediately im-~
plies (9) or (2). The lemma is proved.

el X
(1.2) Proposition. Every conformal transformation of the space Ty50r Ty 4 of the form

o= N alzr Lot {11)

is trivial, i.e., a motion.

In fact, the Killing vectors for conformal transformations of the type (11) have the form
4 -
g = X bisk .
E=1
These Killing vectors are known to satisfy the equations
ag. gE® JE"
5"53? +gingi‘§+ghn£§’ = hgir, (12)

where A is some function.

*
Consider the space Ty 5. Writing out the Killing equations (12} for pairs (ik) equal to (22) and 44}, we
obtain
— 2m§4e2mx4 — 282"”‘4{7: — 7\.82(‘”‘4,

— 2% = — A,
from which it is clear that

% = 2b; = const,

A = 20E* - 2b3.
Consequently, £ = const, Le., b} = b} = b} = b} = 0. But the last equations give A = 0. Thus, the assertion in
(1.2) is valid for the space T2,5.

L3
Now consider the space T4 and write out Egs. (12) for (ik) equal to (22) and (44):
20kte—0xt — De-20x%p] | D¢, 0xtp] = — pe-toxt,
— 2b% == — A,

Then
A == 2b} = const,
bz =0,



A = 2b3 — 208,
This gives b} =bj = b} = b} = 0 and A = 0, i.e., a conformal transformation of type (11) is a motion,

Assertion (1.2) is proved.

2. Proof of the Theorem
*
A) Take the case T, ;.

E 3
The cone Cy for T, 5 is given by the equation
— 9e2aul (2t — ut) (23 — u®) — e2oult (z% — u?? ge—oul (#® — u?)? — (2 — uf)? = 0. (13)

In what follows we identify V and R4, andthe terms "hyperplane,” "line," "parallel," etc. refer to R* and
not fo the Riemannian sfructure on V,

We write H‘ia) for the hyperplane in V defined by the equations x* = a = const. In each hyperplane Hiué )
we have a family of lines and parallel two-dimensional cones:

4 4
S (ul, u?, ud) = {(x‘, 2%, 28) — 2870 (21 — ul) (2 — u?) — 2“’”0 (2% — ud? - ge” M0 (22 — ut)t = O},

where u = (1, u?, 1% ul) = H"u.,).,

Let I be an arbitrary generator of the cone S(u u?, u’), where u = @!, u?, %, u}). We now prove that the
image of lu is a line f(fy) lymg in the hyperplane H[f4(u)] For the points v, we lu, (v%\e w, v¥Fu, n ¥ w), we
have

S(a!, w2, 0% N S, v%, v°) NS, wh, w') =1, =ly=1,=C,NC,=C,NCp=C,0C, (14)
Assume that the point f(v) does not lie in the hyperplane Hffﬁt(u)]. Since the cone K=Cy, N H ff“(v)] is distinet
from and not parallel to the asymptotic cone of the two-sheeted hyperboloid I'= C,(u,ﬂl{fﬂ(v)] , there exists a

generator L of the cone K intersecting I' at a point x distinct from f(v). Since z=(;,, N Cy,,, We have f'(z) =
C,NC, =1, . But by (14) we obtain [setting w = £~1(z)]:

Cr1i 1 Co = €1y N Cuy
or
C:NCroy=C, N Cyay.

However, L=C, N C;,, and fu) = . 0. = L. But this is impossible, since L is contained in H%féi v)]» which
does not contain the point f(u).

Conseguently, the above contradiction shows that (14) implies f(v)= H‘[‘f,(u)]. This implies that the line

Iy is mapped onto the line §(1,) = C;u, N Csny» Thus, all the generators of the cone f(C,, nH( )) lie in Hj [ )]
Therefore, f maps the family

(Canti gy uety)

of equal and parallel cones onto the similar family of cones {Cw nNH fﬂu)} :wer‘f,,(u)] } . But then by Theorem 3 in
[6], f is affine on H‘iu‘},)’ and in particular,

${H ) = Flmor
Let I be a line lying in H%u%) passing through the point u, and not intersecting the set
— 264 (51 — ) (@ — ) — €U (28 — w2 06T (a7 — ) — (of — uf>0, 15)
except for the point u. The set*

f
u=Ca\ U, (€N C) (16)
xFEU

*This construction was shown to us in the three-dimensional case by A. V. Kuz'minykh,
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is a two-dimensional cone which "sticks out" in the fourth dimension from the hyperplane Héi(uo) Now let I' be
a lme distinct from I and not intersecting the set in (15) except for the point u and contained in the intersection
of H(u y with a three-plane containing the cone Q. We denote by Q4 the cone obtained from Qy by a shift taking
u into x. Then the set

Qu\xgl,(oxnou) an

is a pair of intersecting lines which "stick out" from the hyperplane H(u . We denote t}zese lines by l‘ and lm
respectively. They span a two-dimensional plane T which intersects each hyperplane Hg) in a line l(a} If the

point u is moved along TN H t 5 we obtain two families of pairwise parallel lines {lu, hveTnHS ( 4>} But

the lines l(a) for arbitrary a define a third family of parallel lines on T, which we denote by {live T}, Itis
now easy to see that since f is affine on each hyperplane H(a) (since the number uo is arbitrary) and preserves
the cones {Cu} f preserves the constructions in (16), (17) no matter which point ueH( 5) we choose. Hence

f maps the two-plane T onto the two-plane f(T) and takes the three families of parallel lines {Il:ueT} G =
1, 2, 3) onto three similar families of parallel lines, But then f is affine on T [7].

We choose three lines Léo (A =1, 2, 3) in the hyperplane H( 4) and one line Luo contained in T such that
the lines Ly, (A =1, 2, 3, 4) are in general position, i.e., their d;rectxons are linearly independent in R%

onto
There exists an affine map g: R4 — R with the property
g () = uo, glf (LE)]=LE, (4 =1,2,3,4).
A

But then the map g°f is affine onto H(y4) and T, and (ge0) (H‘iu%,) = Higd), (g°D(T) = T and (g0 (Ll‘i‘(,) = Ly, (A=

1, 2, 3, 4). We choose the lines Lu0 (A =1, 2, 3, 4) as new coordinate axes, It is easy to see that g-f is de~
fmed by an affine transformation in these c*oordmates Consequently, f is affine from R* onto R, i.e.,

4
fi(z) = 2 mrt +ak. (18)
Since
AC) =C,

we have along with (13) that

26570111 (&) — GO (@) — 12 ()] — &7 [ (@) — P ()l +
+ e[ () — P )P — (£ () — £ (W) = O. {19)
Substituting (18) into (19), we obtain

{—. [2a}a? + (o2)?] - X2 + —% (af)?* — (a2)? } —ul? 4
{ 2 (al% + aja3 + 01‘1;) X4 2—;‘ aja — 2‘11‘12} (zt —ul) (2 —u?) +
+ I— 2 (aaax + alaa + asaf) X2 + = a} 3ai — ..agag} (at —ut) (&® —u®) +
+{ 2 (aka? + abad + alel)- X2 42 alad — Zaia%} (a* —ul) (2t —ut) +

+ {—— (20305 + (@2)*] - X2+ 5 (a3) — (aé)"*} (a® —u?) +

— 2 (akad + alad + aBal). X2 + Eiazas — 2a3ast (2% — u?) (2® — ud) -
X
+ { 2 (a3al + ajal + ajal) . X2 + ’X' agai — 4‘12} (2% — u?) (2t — uf) +

L2 (]34 () — (0] 0 — w4
-+ ‘L— 2(“3“4 + a4a3 + asai) X —2_;‘ ajay — »-‘l:;l“:} (a® — ud)(zt —uf) +

(2030 + (] X0 4 £ (@) — ()] (o — i = 0, 20)

677



where

4
X = exp [m > a,i‘,u’*—{—ma‘*]

h=1

If we now use Proposition 1.2 in Sec. 1, we can equate the coefficients of (xi— ul)xk— uK) in Eqs. (13) and
(20). Equating the expressions multiplying (x!—u')? and &'— u!) x? — u?), we obtain

ai=al=al=0, alad=0. 21}
Comparison of the coefficients multiplying ! — u*)? then gives

(ad*=1, di=ai=0;
for &'—uh)&®— uwd):
ajasX® = grout

or

i

4
o =as=03=0, ag=1, ajgy= e 200"

But then (21) implies 4§ = 0. Continuing with similar comparisons, we obtain the result

a3a; + aja3 = 0, 22)
(a8)* + 20305 = 0, @3)
(a; P = ema"'l

al =0.

Consequently, only the coefficients al, &, di, af, ai, al, 4 are nonzero, Moreover, the last three are related
by (22) and (23), Hence one of them can be taken as an arbitrary parameter, Set a = e ° and o* = 2 /wyos,
Then we have finally

2 2xs, 3 ; —0g, 1 5ag, 4 .
a; = +4-¢ 51 as=(i)e 57 a]_:(i)e 51 a4=11

2
@
4= 0, oy = — (k)= " —ap = () o™ 24)

o

d=a; a?=a,; ®=a; a=——

a %

wherethe signs + or (*) appear where we had {o take square roots, the parentheses in the second case appear-
ing as a reminder that the choice of sign (say of 4}) automatically entails the choice of the same sign of a% and
a}, whereas there are no restrictions on the signs of & and 4.

If we now compare the affine map (18), {24) with the motion (5), we see easily that they coincide if the
upper signs are chosen in (24), In general, the signs in (24) reflect the existence of two motions in ’fz’g given

by

(I) ' =—z'", 3° = —2*, F* = 2%, T* =z

(ID Z'=z 3 =-2", =0, =2,
which were not accounted for when we write (5). Thus case A) is proved.
%
B) Consider the space Tj .

Repeating all the arguments in part A) [not even changing the notation, apart from replacing expression
(4) by 6)], we verify that f is affine in the coordinates which we consider, i.e., as before, Eq. (18) holds for
f. It remains to calculate the coefficients af{ and a'. We have two expressions, analogous to (13) and (19):

2e,e~20ut (g1 — yl) (23 — u3) — e—20u (22 — y2? |- 2e,00%! (22 — 4?) (23 — u¥) — —é— groud (g8 o (zt —uf =0 (25)

Deye=t0r0.(1(2) ~ L ()] 1F*(2) — * ()] — €100 [ (2) — ()P +

+ 26,6070 [f3 () — N (@) — ()] — - e[ (2) — @ — [ (2) — F (] = 0. 26)

Substituting (18) into {26), we obtain:
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1
{[281‘1%“:{ - (d3)2] X7 2£2Xa§a:; - Z{— (a?)z — (‘14)2} (zt— ul)l + {2 [31 (0|a2 + Gzal) - alazl X7 2e,X (a1a2 -+ agfll)
— X*aja; — 2(11@3] (2 — ) (a? —u?) +- (2 [81 (a1d] + a3a} ai’”QJ AT
-+ 2¢,X (ala) + a3a1) — X*%3a} — 2atadl (x' — ) (2° — uB) +-
+ {2 [ ( 1a4 + a4a1) - a1a4) X7 2e,X (aiai + 04’13) - X4a1a4 {’aidi} (2t —uty (z* —ut) 4
+ {[2e0ded — (@)1 X7 4 26 Xadad — - (ed)? — (89"} 22— +
+ (2], (a3d + adad) — adai] - X% + 26,X (alad - afad) —
— X*%3a — 2alad) (2* — u¥) (@® — u®) + (2[e, (ala} + ala}) — a3al]- ‘)._2 +
+ 28,X (aza4 + a4a;) — X*adad — 2412&4} (x> — uly (! —uh) +
-+ {[ZSIa},af — (ag 2] X7k 26, Xadah — 5 (ag) — ( ) }(I3 — 3R+

[31 (a4a3 + (14%) - 03(14] X7t 2¢, X ’\(13“; + aiag) -

— X%lad — 2a%ad) (2% — u®) (24 — ub) - [[281“}4’11 —(a)] X7 4 2e,Xa%al — 5 (a4) — (ay)? l — =0, @7)
where
X o= exp [(o 241 atul - wa"}
k=1
We now compare (25) with (27), The expressions multiplying &' = uh)? and &! - uh? give
di=al=a=0, a;=2a}=0, (a}) -
and further comparison of the coefficients of &' —ul)&® ~ ug),. x? — uh)?, %~ ud)? gives
aladX P = e20udt | ie, gt =ai=0, a}=1, dld}=ew0at, 28)
=0, = xewa g} =0a}=0, o= xe200} 29)
while the coefficients of (x* — u?)® — v%) and &®— %) &* — u?) give
aj =0, atad=e-9e*, o} =0, (30

Equations (28) and (29) imply that a} = ie4wa4,

Thus the only nonzero coefficients are al, a%, ag, a}, and as we see from (28), (30}, the signs of ai, a%,
@ are all the same. Finally, we have

90y

(j:) etoaiyt + al
(:t:)e"m"u::2 + a2, (31}
8= (k) e-zonisd L g,

zh == 2t + at.

w8
o

8}

. Letting a' = w™!8, a® =68, @ =y, a' = @, then we see easily upon comparing the affine transformation
(81) with the motion (7) that they coincide if the upper signs are chosen in (31),

The choice of lower signs indicates the ex1ste*1ce of a transformation of the form x! = ==x!, ¥* =—~%2,
=3

%3 = —x3, which is easily seen to be a motion in T3 ,« which was not accounted for when we wrote down (73,
Thus, f is a motion. Hence the assertion of the theorem is also true for the space T3 oo

The theorem is proved.
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STATISTICS OF THE SPECTRAL DENSITIES OF
STATIONARY STOCHASTIC PROCESSES

I. G. Zhurbenko UDC 519.24

In this article we are interested in the construction and investigation of the asymptotic properties of the
statistics of the spectral density f(A) that are constructed with respect to a sample {x@),...,X®™)} of a sta-
tionary stochastic process X{t),t=...~-1,0, 1, ..., with the mean MX(t) = 0 and the covariance function
C(t). It is natural to consider the class of all the quadratic forms

P 2 BwX (s) X (2) ©.1)
§,t=1

with arbitrary coefficients b( .t as the admissible class of the statisties for reasons of dimension. As shown by
Grenander and Rosenblatt [1 31, the asymptotic behavior for N — = of the first two moments of the statistic of
the spectral density is not worsened if in place of the class (0.1) of statistics we consider the narrower class
of the statistics of the form

v () = gy sél B (1 — s)eitt-nX (8) X (s), 0.2)

which can be represented in the form

N—-1

W =a X 0o, ©.3)
t=—N+1
where
. N—[¥]
Cx(t) =+ Z X () X (s +t] 0.4)

Under quite general conditions they bave shown that for arbitrary asymptotically unbiased estimate fN(A) of the
class (0.1) there exists a statistic fN(A) of the class (0.2) such that its bias

Afy(A) =M7y() — fA) (0.5)

coincides with the bias of the statistic fNO\), and the variance is asymptotically less than or equal to the vari-
ance of fN(A) Thus, from the point of view of asymptotic behavior, it is sufficient to consider statistics of the

class (0.2).

The statistic }N(A) can also be represented in the form

i
@)= § OxX) Iy +1)dz, (0.6)
-5
where IN(&) is called the periodogram
I_V" 2
In(2) = gox | D 66X (t)l ©.7)
t=1
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