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BREAKDOWN OF CONNECTEDNESS OF PHYSICAL SPACE 

A. K. Guts UDC 530.12:531.51 

The conditions under which the number of connection components of physical space 
changes are determined. 

In this paper, we determine the conditions under which the topology of physical space 
changes, more precisely, becomes disconnected. This problem was investigated in [i] for a 
closed universe. 

O Let M be a connected three-dimensional Riemannian manifold with the metric ya~(a, B = i, 
2, 3), Do C~ M be a closed region, which is homeomorphic to a three-dimensional sphere. Let 
us suppose that in time t 6 [0, i], the number of connection components of the manifold Mo = 
M(t = 0) increases, and the manifold changes into one Ma(t = i) which is no longer connected. 
Figuratively speaking, a region Do separates from Mo. So as not to complicate the presenta- 

tion, we shall assume that M~ has two connection components D~ and Ca, i.e., Mx = Da ~J Ca, 

D~ ~ Ca = The transition from Mo to Ma proceeds via some critical 3-space M1/z(t = 1/2), 

which is obtained from Mo by contracting the boundary 3Do of the region Do to a point. Then, 
Do transforms into the region Dx/2, homeomorphic to the 3-sphere S s. Therefore, a necessary 
stage in the path to separation of Do from Mo is stretchingMo along 3Do: the transition from Mo 
to Mx/2. If Fo C Mo is an arbitrary closed two-dimensional submanifold intersecting Do along 
Bo and, in addition, Bo is homeomorphic to the 2-sphere, then at t = 1/2, the boundary 3Bo is 
already contracted to a point, while at t = i, the region Bo is separated from Fo. For this 
reason, we shall first study the breakdown of connectedness of the two-dimensional manifold 
Fo. We shall denote the manifold or space obtained from Fo up to time t by F t . 

We shall realize the separation of Bo from Fo as follows. We shall examine the family 

of Riemannian metrics aAB(t), t ~ [0, i], A, B = i, 2, defined on the manifold Fo and satis- 

fying the following conditions: 

i) aAB(t) for 0 ~ t < 1/2 belongs to class C 2 and for t ~ 1/2, the first order deriva- 
tives of the functions aAB(t) are discontinuous on 3Bo; 

2) the length of the curve 3Bo, calculated in the metric aAB(t), t < 1/2, approaches 0 
as t + 1/2 or, in other words, 

d~tloBo---" O, d~t]O~o=O ~r t ~ l / 2 ,  
t~l12--0 

where do t is the element of area in the metric aAB(t); 

3) the Riemannian spaces Fo~(Bo U OBo), Bo\OB(~ with the induced metric aAB(t), t ~ 1/2, 

supplemented with the "point" ~Bo, are closed oriented manifolds. We shall denote them as 

A t and Bt, respectively. 

Let us clarify the metric conditions 1-3. We represent the transition from Fo to F~ 
through Fx/2 on the same set of points Fo. For this, the family of topologies Tt, t ~ [0, i], 

is introduced on Fo and, in addition, each topology T t is matched with a topology generated 
by the metric aAB(t). Therefore, the space F t as a set equals Fo, but, in general, it has a 

different topology. We can write symbolically F~ = < Fo, Tt >, in particular, B t = < Bo, T t >, 
having in mind the topology induced on B t. In the topology Tx/2, the curve 3Bo is a point, 

while the calculation of the boundary ~x/2B~/2 of the set BI/= in the topology Tx/= gives O, 
i.e., 3x/=B1/2 = 3x/= < Bo, TI/= > = • , because Bx/2 = < Bo, TI/= > is already homeomorphic 
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to the sphere S 2 Thus condition 2 indicates that 3Bo is contracted into a point. The space 
Fx/2 is a critical space; it consists of two manifolds AI/= and B~/= with the point < 3Bo, 
T~/2 >. For t > 1/2, the manifolds A t and B t represent different connection components of 
the separated space Fo (the point < 3Bo, T:/2 > no longer represents two different points). 
There is nothing unnatural in this, since the connection components in reality are diffeomor- 
phic (and isometric) to A t and Bt, respectively. Our construction is not as convenient as 
the Lorentz cobordism [2] between Fo and F~, but, on the other hand, it is suited for compar- 
ing the integrals taken along Ft, t < 1/2 and F s, s > 1/2, which is done below. 

The constructions made above permit talking about the topological metamorphosis of the 
manifold Fo, due to the application of the Gauss--Bonnet theorem. This theorem says that for 
a two-dimensional closed oriented Riemannian manifold F of class C = 

S l ' da  := 2a z (F), 
F 

where F is the Gaussian curvature and x(F) is the Euler-Poincar~ characteristic. 

Therefore, for 0 ~ t < 1/2 

5I',dat = 2~Z (Fo) (Z) 
Fo 

and for s > 1/2 

A s B s 
(2) 

where Ft, do t are, respectively, the Gaussian curvature and the element of area in the metric 
aAB(t). Let Fo be homeomorphic to the sphere S 2. Then x(Fo) = X(As) = x(B s) = 2. We call 
attention to the fact that equalities (2) were obtained as a result of condition i, i.e., due 
to the loss of smoothness of the metric aAB(t) on 3Bo. 

Let V be a small neighborhood of the curve 3Bo (in the topology To). We shall assume 
that aAB(t) = aAB(0) outside V. Then, it follows from (i) and (2) that 

v N ~  vNA s v 

o r  

; (y  d% ) d~t 4~. 
\ s d~ t -- I ' t  ----- 

V 

(3) 

Since do s = 0 on 3Bo, we obtain from (3) that there exists a neighborhood W~V in which Fs>> 
F t . This means that the separation of Bo from Fo indicates a sharp increase in curvature. 

Returning now to the breakdown of connectedness of the physical space Mo, we conclude 
that the separation of Do from Mo is characterized by a jump in the Gaussian curvature in some 
neighborhood U of the "sphere" 3Do for any two-dimensional closed manifold Fo intersecting Do. 
From here, we conclude that there is a jump in the scalar curvature s of the manifold Mo 
in some neighborhood U _-3_. 3Do. Indeed, (3)R= 2F + ~, where F is the Gaussian curvature of 
the section Fo, while x is the invariant of its exterior curvature (G=uss--Codazzi equation). 
The section can be chosen so that,x = 0 (for example, the section e = const or ~ = const of 
the closed Friedman universe). For this reason, a jump 6F in the curvature g implies a jump 

~(3)R in the curvature (3)R. 

Let us examine the space--time metric 

d s  2 = ( N  2 _ N ~ N  ~) d t  ~ - -  2 N ~ d t d x  ~ - -  ~ ( x ,  t)  d x ~ d x  ~, 

on the set of events Mo x [0, i] satisfying the conditions: 

a) t = const is a spacelike section with metric y~B(x, t); 

b) 3yaB/3n, where n is the normal to the section t = const, are continuous; 
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c) yaB(x, t) = o YaB outside some neighborhood U of the region Do in the topology of the 
manifold Mo; 

d) the metrics aAB(t) induced on two-dimensional sections Fo (they are induced by the 
metrics y~B(x, t)) satisfy the conditions i-3 and dOs/dO t < 1 for t < 1/2, s > 1/2 in U: 

e) the Gaussian curvaturer s of the section Fo in the metric aAB(S ) is nonnegative (s > 
1 1 2 ) .  

It follows from (3) and c-d that 

i l'~d. h ~ . 4 r . @  j" I'r t < 112, 1 ; 2 < S  
u f) :-~, uf]~% 

or 

where ~P : l's -- l't, 

or(A) is the area of the region A (_2Fo in the metric aAB(t), and 

1 j ' /do~  <f> - 

~t ( J )  
A 

(4) 

is the integral average of the quantity f. 

The dynamics of the 3-geometry is described by the Einstein equations, 
([3_], p. 157) 

lgr.G 
(:~)R~-i K:,, -- - -  ~ (t) ,  t ( ! [0 ,  1]; 

C ~ 

K~,, = ( ~ T  (t)): - K~ (t)K ~ (t),  

from which follows 

(5) 

where Ka$(t) 

Then 

is the tensor of the exterior curvature of the section t = const. 

16~G 
C ~ (6)  

where 

a~:~!R = (~V? s - -  t3)R t, aK., = K~,s - -  t Q t ,  a~ = ~(s) .... ~ ( t ) ,  t < 1/2, 1 . 2 <  s. 

But, as demonstrated above, 

(7) 

where F is the Gaussian curvature of the two-dimensional section Fo. At the same time, due 
to the condition b above, the exterior curvature K2, t will be a continuous function on Mo x 
[0, i]. Therefore 

< ~K~ > = (/r - K~.t) J~ . . . .  ~ , , o  - - - ~  0. 
i -~!/2--0 
s->l/2+O 

For this reason, for some to < 1/2, 1/2 < so, the quantity < 6K2 > is negligibly small and 
then, from (4)-(8), we obtain 

c ~ l 

2~O ~to (U ~ Fo) " 

(8) 

It is now entirely permissible to write 

c ~ I 

2~O o 

w h e r e  a i s  t h e  c h a r a c t e r i s t i c  s e c t i o n  o f  t h e  r e g i o n  Do. 

(9) 
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Equation (9) gives us the average value of the jump in the energy density, which gives 
rise to separation of the region Do. 

From (9), we obtain the following estimates: 

i) o ~ 1020 cm 2 (sun), < 6p > = < 6e >/C = ~ 107 g/cmS: 

2) ~ ~ i0:2 cm 2 (neutron star), < 6p > % i0 ~s g/cm3; 

3) ~ ~ 10 -66 cm2(singularity), < ~0 > ~ 1093 g/cm 3. 

Thus separation of small regions is inhibited by a strong potential barrier. Motion in- 
duced in space by a change in the topology of the space itself will require enormous expendi- 
tures of energy. The parameters of superdense configurations are close to those for separa- 
tion from space. This confirms our conclusions, obtained in [i] for a closed model of the 
universe. Breakdown of connectedness is to be expected in ~ravitational collapse of massive 
stars because in this case singularities arise (based on Penrose's theorems [4], p. 242), 
which entail a singularity of the curvature. It is easy to see that the above picture of the 
breakdown of connectedness is in many ways similar to the process of gravitational self-closure 
accompanied by gravitational collapse of homogeneous spherically symmetrical configurations, 
analyzed in detail in [5] (p. 52). For this reason, it may be expected that singularities 
form due to breakdown of the connectedness of 3-space. 
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THEORY OF SPATIALLY PERIODIC STRUCTURES. 

BOSE EXCITATION GREEN'S FUNCTIONS 

A. I. Olemskoi UDC 539.2:530.145 

We discuss Green's function techniques in the description of spatial ordering 
viewed as a Bose-Einstein condensation of the density wave of the ordering units. 

i. Two approaches can be used in treating spatial ordering in quantum statistics [i, 2]. 
The first is based on the exclusion principle, according to which units forming the spatially 
periodic structure (the atoms of a crystallizing liquid or solid solution or the phase separa- 
tions in a quasiperiodic macrostructure of dissociating alloys) cannot occupy the same spatial 

+ 
position r. This allows the representation of the ordering process as a redistribution of 
fermions over the states r. The corresponding Green's function formalism is identical in form 
to the techniques of Gor'kov in the theory of superconductivity, and has been discussed in [i]. 

In the second approach, the ordering process is thought of as a redistribution of the Bose 
density of the ordered structure over values of the wavevector ~. The condition that this 
method be applicable is that the Bose amplitudes C k be statistically independent for different 
values of ~ [3]. However it can easily be shown that if the total number of structural units 
is conserved, the C k satisfy the relation* 

"~ < lC~l  ~ >=const, (i) 
K 

*The proof of (i) is carried out in similar fashion to the case of an ordered solid solution 
[4], where const = C(I -- C)N, C is the concentration, and N is the total number of atoms. 
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