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In most cases, axiomatic descriptions of relativity theory use set theory. And al-

though this has led to certain successes (see [1] and [2]), it should be noted that the

existing sets of axioms for special relativity do not allow one to declare with satisfac-

tion that the construction of this fundamental physical theory has been completed.

The situation of the axiomatic approach to general relativity is still more complicated

[2]-
From a geometric point of view it is preferable to speak about constructing a uni-

fied synthetic theory of pseudo-Euclidean and pseudo-Riemannian manifolds. How-

ever, such a unified approach to the axiomatization of both special and general the-

ories of relativity has apparently not been used. As a rule, the systems of axioms

for special relativity contain fewer primary notions and relations, are simpler, and

lead directly to the ultimate goal. In the case of general relativity it is difficult to

introduce a pseudo-Riemannian metric, especially a smooth one, since this requires

first solving the problem of endowing the set being considered (the space-time) with

a structure of a (smooth) manifold [2].

Such difficulties, especially those of mathematical character, could be accounted

for by the fact that we are dealing with the problem of describing two substantially

different physical theories. In one case we deal with a mathematical theory of (flat)

space-time which forms a background on which all sorts of physical fields, including

the gravitational one, act on an equal footing. In the other case the problem consists

in an axiomatic description of only one physical field, the gravitational one. However,

first, such views are far from being accepted by all physicists, and, second, it is quite

natural to try to construct a unified theory using, if the need arises, new mathematical

ideas.

In the author's opinion, this state of the problem is due to the fact that one is trying

to solve it on the basis of the set-theoretic approach. This has been a traditional

approach of twentieth-century mathematics, but in the present case, concerning a

mathematical description of the real space-time, one must seek the root cause of

failures in the deficiencies of the mathematical apparatus being used. It is naive

to think that all attributes of the space-time form of existence of matter can be

formulated completely in terms of set theory. This theory is only a historical product

of consciousness; it came into being as a tool for analyzing infinity, but this tool is

of limited use when analyzing space-time.

In this note we demonstrate the efficiency of a topos-theoretic approach to solving

the problem of a unified axiomatic description of special and general theories of rel-

ativity. In other words, we present below a categorical theory of pseudo-Riemannian

manifolds.

Let % be an elementary topos with continuous real numbers object Rr (see [3]).

An affine morphism a: RT —> R7 is a finite composition of morphisms of the
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form
l
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where © and <8> are the operations of addition and multiplication in Rr , j u , X: 1 —>•

Rr are arbitrary elements of Rr , and j: Rr ~ 1 x Rr is an isomorphism. We denote

by T the set of all affine morphisms from Rr to Rr .

An affine object in <§* is an If-object a together with two sets of morphisms <D

and *¥:

O C Hom^(Rr, a), *¥ C Hom^(a , R r),

such that the following conditions hold:

1) For any <p e 0, i// G *¥, we have i// o q> e F.

2) If / € Homg,(Rr, a)\O, then there is a i// e *F such that ^ o / ^ F.

3) If /€ Homg,^, Rr)VF, then there is a #> e O such that foy £ F.

4) For any monomorphisms /: Q >-> a and g: Q >—>• R r , there is a #> e O such

that q> ° g = f.

5) For any monomorphisms f: £1 ^> a and g: Q >—»• R r , there is a if/ e *¥ such
that i//of=g.

Here Q is the subobject classifier in i? .

In the category Set, affine objects are sets endowed with a structure of an affine

space [4], In the topos Bn(/) and in the spatial topos Top(7) (the notation being

as in [5]), an affine object is a fiber bundle with base 7 and affine spaces as fibers.

Not every topos with a real numbers object has an affine object. For instance, this

is the case for the topos M2 — Set.

A categorical description of special and general relativity presupposes that a

Lorentz structure, i.e., a quadratic form gr, has been defined either in an affine

space or in a fiber bundle with affine spaces as fibers. This can be done by defining

in the affine space a family of equal and parallel elliptic cones [7].

Below, we shall use the definitions, concepts, and notation of [5].

Let a be an affine object in the topos <i? . An order in a is an If-object P together

with a collection of subobjects {px: P >—>• a} , where x: 1 —> a is an arbitrary element,

such that 1) x 6 px and 2) y e px implies z e px for any z e p .

In what follows, we shall use the notation & = (P, {px}) for an order in a .

A morphism /: a —>• a is said to be affine if, for any (p e O and if/ 6 *F, we have
i// o /o (p e F.

Denote by Aff(a) the set of all affine morphisms, and let stf c Aff(a) consist of

commuting morphisms.

An order & is invariant under stf if for every px , p there is a ^ € J/ such

that g o px = p A morphism /: a —> a preserves an order ^ if for each px

there is a » such that f ° px = p .

The collection of morphisms that preserve an order & invariant under J/ will

be denoted by Aut(^).

A ray is a morphism A: R+ ^+ Rr -^ <2 , where (p e <I>. Here R+ is the subobject

of Rr consisting of those t such that 0 < t (see the definition of the order in Rr

is [3]). An order & is said to be conic if 1) for each y e px there is a ray A c /^

such that x, y e /I, and 2) jc is the origin of /I, i.e., if A' is a ray and y 6 A' c A ,

A' / A , then x ^ A' .

An order ^ /jos <2« #c«te mtex if for each px there is no cpx e O with q>x c px .

An order is complete if for each element z: 1 —> a and each px there exist different

elements u x , v x: 1 —»• a and 9? e O such that z, ux, vx £ <px and ux,vx£px.

An element u e px is said to be extreme if there is a #> e O such that w e ^ but

y £ (p for all y € px .

^

90S



A conic order & is said to be strict if, for each nonextreme element u e px,

and v e px , and each ray A with origin u such that v e A , there exists an extreme

element w e A , and w e px .

An affine object a with an order ̂  , which is complete, strict, conic, has an acute

vertex, and is invariant under j/ , is said to be Lorentz if for each x: 1 —> <2 and

each extreme elements M , ?; e ̂  with u, v ^ x there is an / e Aut(^) such that

the diagrams

commute.

THEOREM 1. A Lorentz object in the category Set is an affine space admitting a

pseudo-Euclidean structure defined by a quadratic form x
Q2

 — Y^l^
 2

, where n is finite

or equal to oo, and Aut(^) is the Poincare group supplemented with similarities. A

Lorentz object in Top(7) is a fiber bundle over I with fibers endowed with an affine

structure and a continuous pseudo-Euclidean structure of finite or infinite dimension.

Thus, the language of topos theory allows us to axiomatize in a unified way both

special and general theories of relativity, the axioms being the same in both cases.

Selecting one or another physical theory amounts to selecting a concrete topos. It is

quite possible to take not only the topoi Set, Bn(7), or Top(7), but also any others

that have an affine object. This means that there are essentially new generalizations

of relativity theory.

Finally, let us note that, since the problem of characterizing the topos Set (more

precisely, the problem of a categorical description of set theory), as well as the prob-

lem of characterizing the spatial topos Top(7) within the class of elementary topoi

were solved long ago [6], we have in fact solved the problem of a categorical descrip-

tion of relativity theory.

THEOREM 2. If & is a well-pointed topos satisfying the axiom of partial transitivity

with a Lorentz object a, then & is a model of set theory Z and a is a model of special

relativity, i.e., a model of a pseudo-Euclidean space of finite or infinite dimension. If

& is a topos defined over Set that has enough points and satisfies the axiom (SG) (see

[6]), then & is the topos Top(7) and a is a fiber bundle over I with fibers endowed

with a pseudo-Euclidean structure.

There is still another possibility of applying topos theory to a mathematical de-

scription of space-time. One can attempt to achieve the desired simplicity when

axiomatizing relativity theory at the cost of giving up the classical view that space-

time is the world of events "placed" in a single "space". To this end, consider a

partially ordered set P and contravariant functors from the pre-order category P to

the category Set. This gives rise to the topos Set
P, and it is this topos which is the

new mathematical space-time. The value of a functor F on an element x of P is

the set F(x]. The set P is interpreted as the collection of all possible situations of

obtaining information about past. It has a (timelike) partial order. The set F(x] is

the (causal) past cone consisting of the events that are observed in situation x . The
p

functor F can be interpreted as a time flow. The topos Set consists of all possible

time flows. It is not hard to see that a classical Lorentz transformation corresponds

to a natural isomorphism of functors, i.e., time flows.
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p
Thus, the space-time Set , which may be described as a Grothendieck topos, can

no longer be "placed" in a single "space".
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