CLOSED TIMELIKE SMOOTH CURVES IN THE
GENERAL THEORY OF RELATIVITY
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For a space—time which admits a closed timelike smooth curveitisestimatedthatr ~2- 10-%
-JVp 1%, where T is the real time and! the spatial length associated with the timelike curve,
and p is the density of material.

In connection with Howard's paper [1] dealing with the cosmological model of Gddel [2] and particu-
larly with Godel's statement that a closed timelike smooth curve exists in his model, it is important to re-
consider this interesting problem in the general theory of relativity. Howard casts some doubt on the re-
sult of Chandrasekhar and Wright [3] that a closed timelike smooth geodesic is impossible in the G&del mo-
del. It is shown below that the original conclusion in [3] is correct.

Different opinions have been expressed about models which admit closed timelike smooth curves
(timelike cycles)(see [5]; [8]; [6], p. 625. The estimates which we make below, however, show that the phe-
nomena either cannot be observed in practice, or are only realized in areas where modern physics has not
yet penetrated, or must be considered from, say, a quantum-mechanical rather than a classical point of
view.

As regards the allegations that the principle of causality is infringed by models which admit time-
like cycles, it is better to turn to philosophy ([7], Causality) and it then becomes clear that the fears are
unfounded. Information on timelike cycles can be found in [9].

1. The G6del metric has the form

ds? = a? (dx" —dx” + %83'“, dx¥ — dx¥ 4- 22+ dx°dx?), (1)

1

where a = const, and the variables x°, x', %, x° can have all numerical values.

We assume that the metric admits a timelike cycle and that this is given by the relationships
xt=fi(1), tel01]

Doy dfe o dfi o (6=0,1,2,3),
fu@y = A, 2 (0) = 25() J

where {j is a function of class Ck (k = 1). It is not difficult to see that the function f, cannot be constant’
and this implies that the function £ (t) = f(',/fé, (where the dash denotes differentiation with respect to t) can
vary over the whole numerical axis, because f, has an extremum in the interval (0, 1).

We thus have

< Uf  eHO f

(') = [f, ~ eMOfi ]2 — (fi — e

Let {Ii}?: ) (m = 1), the intervals containing the zeroes of the function f; (t), be so small that
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A=[0N\U T+ 2.

m

Then for A we have: (s')? = (£)? F(t), where F(t) = [£(t) + exp f; () ’. We take the manifold {; I; such
i=1
that at the ends of the intervals Lj(i=1,..., m)

[E() | >exp /i (€), 2)

and also A = (. Suppose that t; €(0, 1) is the extremal point of the function f;. Then t; € Ik, and as a re-
sult of (2) and of the fact that £ (t) has a zero at t; in the interval (0, 1) (with of course t; = t;) it immedi-
ately follows that the graphs of the functions £ (t) and exp f; (t) have a common point, i.e., there exists a
point t, such that t, € A and £ (t,) = —exp f; (t,). But then (s")?(t;) < 0, and this contradicts the timelike na-
ture of our curve.

Thus the Godel metric, considered as a cosmological model with a Euclidean topology, does not ad-
mit timelike cycles. The conclusion of Chandrasekhar and Wright is therefore correct.

2. In our opinion, Gddel's error occurred as a result of the careless use of a coordinate transforma-
tion, because a change of coordinates implies the possibility of a transition from one topology to another.
We can make this clear by means of an example. From a Minkowski plane, i.e., a-plane with the metric

ds? = dx* — dy"', (3)

we cut out the strip {0 = x = 1} and identify the boundary points (0, y) with (1, y). We thus go over from
a Euclidean to a cylindrical topology and thus ensure the existence of a timelike cycle which did not exist
before. The procedure is also contained in the transformation

(8 + %) charctg (2.%), @

X = — (& + *) sharctz (§/7), ¥ =

1
2

o | =

which converts (3) to the form
because (4) contains the transformation exp (x + iy) which "picks out" a point from the plane. The timelike

cycle for (5) is given by the relationships £ = sin t, # = cos t and the velocity of a particle from the given
world line at the instant the cycle is closed is equal to c - th4m = 0.99c!

3. We now derive some estimates which enable us to judge under what physical conditions timelike
cycles are realized.

We use the notation and terminology of [4].

We suppose that the gravitational field is constant and is created by macrodust at rest. Since the
real time and spatial distance are chronometrically invariant, we can take gy = const > 0, for in the oppo-
site case it is possible to make the transformation x° — vV gy x?, x@ — x®,

We assume that the timelike cycle L is an analytical Jordan curve, that it lies on the surface F {x?,
%° = const} and bounds the region F. We can assume without loss of generality that the cycle L is given
by the conditions xt* + x2* = const; x°, x* = const, i.e., is a "circle, " because if it is not we can make an
analytical transformation of the coordinates x! and x* by virtue of the Riemann theorem and the Schwartz
principle [10]. Suppose also that gy = g3 = g3 = 0.

Calculating the real time spent round the path L, we get

1 & o ’ 2
2(L) =?§fzvz_’dx - lSF.S‘de'dx ,

where

o~ VB () ()

¢ 0x" \ &oo 0x® \ oo

On the basis of the equation in [4], we can write
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_&xlp 1
T glig? — (g'%)?

QZ

where p is the density of material. Noting that the tensor v, g gives a cylindrical Riemannian metric on
the surface F and denoting the determinant of the matrix | Yo l(e,B =1, 2) by 6, we get

2y =897
=

‘Snj]'/‘;:_-dxldx?‘ (6)
F

Since det Il gj Il < 0, the area bounded by the timelike cycle L cannot be arbitrarily small in the sense
of this induced metric. We assume that the given cycle L has the minimal area and suppose that the density
p changes little in the region F. We then get from (6) that

; 12
<) = B9 (),
e
where o (F) denotes the area of the region F. We now suppose that for the spatial length ! (L) of the cycle
L and the area ¢ (F) we have

3 (F) ~m='[[(L)]% )

It is then possible to assume that the components of the metric tensor for the surface F either depend
only on xi + x?%, or that the deviations from this condition have little effect on (7). We thus obtain the re-
quired relationship

T~ 21072 Y7 L2

It thus follows that when p ~ 107! g/em®, with 7 ~ 1 year, we havel ~ [distance from the sun to the
center of the galaxyl =~ 8000 parsec; if however=1000 km, then 7 ~ 6 - 1072 sec! If we take 7 =1 year
and! = 1000 km, we getp ~ 102%8 g/em?1! If we do not insist on condition (7), then with 7 =1 year, I = 1600
km andp ~ 1073 g/em?®, we get 0 ~ 10?7172, This means that the deviations from Euclidean geometry in
a 3-space where timelike cycles occur are indeed vast and there can be little doubt about the conclusion
that the situations in which timelike cycles occur lie outside the limits of contemporary knowledge.

4. We can give an example of a manifold with Euclidean topology and metric which admits timelike
cycles.

Let

\

ds? = %— dx% 20 (x3dx' — x'dx?) dx" + (9%92 -5 dx"?

N -

— 20%x'x%X dx® + (SE'-’x‘2 — ;-) dx? 4 adx®,

3

The required curve is given by the relations {x°, x° = const, x! =a sint, x? =q cos t}, where a = 1

/2.
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