

А. К. Гуц, Замечание к проблеме Гельмгольца—Ли, Докл. АН СССР, 1979, том 249, номер 4, 780–783

https://www.mathnet.ru/dan43179

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

https://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 80.249.207.97

15 апреля 2025 г., 20:05:22

вающая функция ω : $(0,\beta) \to R^1$, $\lim_{\tau \to 0} \omega(\tau) = 0$, что для каждого $\tau \in (0,\beta)$ можно указать отображение w_τ из $W(\varphi) \cap C^1(\overline{U})$ со следующими свойствами:

$$I(w_{\tau}) \leq I(u) + \omega(\tau), \qquad \|w_{\tau}\|_{C^{1}(\overline{U})} \leq N\tau^{-\gamma},$$

где постоянная N от $\tau \in (0, \beta)$ не зависит.

Функционал I достигает на $W(\varphi)$ наименьшего значения $\lambda(\varphi)$ (4). Пусть $u \in W(\varphi)$ и $I(u) = \lambda(\varphi)$. Рассмотрим отображение w_{τ} , построенное в лемме 2 с $\tau = t^{1/6}$. Положим $v_t = w_{\tau^{1/6}}$. Отображение $h_t(x) = x + tv_t(x)$ отображает U на область,

близкую к U_t . Подправим отображение h_t так, чтобы получившееся отображение было из $K(U, U_t)$. Сначала мы подправим отображение h_t на границе области; затем, продолжив поправку на всю область, получим отображение из $K(U, U_t)$. Коэффициент q для этого отображения будет мажорировать q(t) сверху, что и позволит получить (5).

Укажем кратко, как можно реализовать намеченную программу. Существует (5) окрестность Ω поверхности ∂U в R^n и C^2 -гладкое отображение π окрестности Ω на ∂U такое, что $|\pi(x)-x|\leqslant 2\rho(x,\;\partial U),\;x\in\Omega$. Положим $z(s)=\pi(s+tv_t(s)-t(v_t(s),v(s))v(s))$. Тогда $h_t(s)+tl_t(s)$, где $l_t(s)=t^{-1}(\Phi_t(z(s))-h_t(s))$, будет отображать ∂U на ∂U_t , причем (это следует из леммы 2) норма l_t в $C^1(\partial U)$ стремится к 0 при $t\to0$. Если $L_t(x)$ — продолжение $l_t(s)$ на всю область \overline{U} такое, что норма L_t в $C^1(\overline{U})$ мажорируется нормой l_t в $C^1(\partial U)$ равномерно относительно t, то отображение $g_t=h_t+tL_t$ — это то, которое нужно. Используя (3), (4), лемму 2 и свойства L_t , мы получаем неравенство

(6) $(q(g_t) - 1)/t^2 \le I(u) + r(t)$,

где для функции r(t) выполняется $\lim_{t\to 0} r(t) = 0$. Учитывая минимальность q(t), из

(6) получаем (5). Неравенства (5) и (2) вместе дают (1). Автор благодарит Ю.Г. Решетняка за внимание и помощь в работе.

Новосибирский электротехнический институт

Поступило 30 V 1979

ЛИТЕРАТУРА

¹ *I. Väisälä*, Lectures on *n*-Dimensional Quasiconformal Mappings, Berlin. ² *Ю.Г. Решетняк*, Сиб. матем. журн., т. 17, № 6 (1976). ³ *Ю.Г. Решетняк*, Сиб. матем. журн., т. 8, № 5(1967). ⁴ *М.Ю. Васильчик*, Сиб. матем. журн., т. 19, № 3 (1978). ⁵ *Х. Уитни*, Геометрическая теория интегрирования, М., 1960.

УДК 513.011

МАТЕМАТИКА

А.К. ГУЦ

ЗАМЕЧАНИЕ К ПРОБЛЕМЕ ГЕЛЬМГОЛЬЦА – ЛИ

(Представлена академиком А.Д. Александровым 25 IV 1979)

В этой заметке приводится ответ на следующий вопрос: в каком случае будет изометрично евклидовой плоскости, плоскости Лобачевского или сфере универсальное накрывающее пространство для метрического пространства M с метрикой ρ , допускающего в некоторой открытой шаровой окрестности $B(x, \delta_x), \delta_x > 0$, каждой своей точки вращение в смысле Буземана, т.е. для любых точек a, 780

a', b, b' из $B(x, \delta_x)$ таких, что $\rho(xa) = \rho(xa')$, $\rho(xb) = \rho(xb')$ и $\rho(ab) = \rho(a'b')$, существует изометрическое отображение шара $B(x, \delta_x)$ на себя, оставляющее точку x неподвижной и переводящее a в a' и b в b'?

Эту задачу можно рассматривать как локальный вариант знаменитой проблемы Гельмгольца — Ли. Наиболее удовлетворительное решение данной проблемы дано в статье Γ . Фрёйденталя (2). Им получен следующий результат. Пусть M — связное локально-компактное метрическое пространство и F дважды транзитивная (т.е. переводящую одну заданную пару точек в другую) группа гомеоморфизмов M на себя, удовлетворяющие аксиомам:

- (S) для любых замкнутых подмножеств A и B, $A \cap B = \phi$ существует открытое непустое подмножество U такое, что для любого $\lambda \in F$ либо $\lambda (U) \cap A = \phi$, либо $\lambda (U) \cap B = \phi$.
 - (V) F полная группа.
- (Z) пусть J_{x_0} стационарная подгруппа группы F относительно точки $x_0 \in M$. Существует орбита $J_{x_0}(y)$, разделяющая пространство M.

Тогда M является дважды транзитивным однородным пространством в смысле Брихгофа — Вана, в частности, евклидовым пространством, гиперболическим или сферой, а F — замкнутой подгруппой соответствующих этим пространствам групп изометрий.

Аналогичные результаты получены и другими исследователями ($^{3-6}$). Для этих работ характерны методы, оперирующие в целом и опирающиеся главным образом на достижения теории групп Ли. Однако известен следующий локальный вариант решения проблемы Гельмгольца — Ли, принадлежащий Γ . Буземану.

Теорема Б. Если каждая точка x G-пространства $\langle M, \rho \rangle$ имеет шаровую окрестность $B(x, \delta_x), \delta_x > 0$, допускающую вращение в смысле Буземана, то универсальное накрывающее пространство для M является элементарным, т.е. евклидовым, гиперболическим или сферическим ((1), ctp. 411).

Напомним, что под *G*-пространством Буземан понимает пространство, удовлетворяющее аксиомам:

- I. $\langle M, \rho \rangle$ метрическое пространство.
- $II.\langle M, \rho \rangle$ ограниченно компактно, т.е. любое ограниченное бесконечное подмножество имеет, по крайней мере, одну предельную точку.
- III. Если заданы две различные точки x, z, то существует такая точка y, что (xyz), т.е. y отлична от x и z и $\rho(xy) + \rho(yz) = \rho(xz)$.
- IV. Каждой точке x соответствует такое положительное число ρ_x , что для любых двух различных точек y и z из открытого шара $B(x, \rho_x)$ существует точка u, для которой (yzu).
 - V. Если (xyz_1) , и (xyz_2) , и $\rho(yz_1) = \rho(yz_2)$, то $z_1 = z_2$.

Хотя результат Буземана — единственная известная нам попытка решать проблему Гельмгольца — Ли с локальной точки зрения, он не может служить окончательным ответом на поставленный в начале статьи вопрос. Дело в том, что непосредственным следствием аксиом IV и V является локальная единственность кратчайшей, соединяющей точки $x, y \in B(p, \rho_p)$, а это очень сильное предположение, от которого следует отказаться. Заметим, что при введении понятия G-пространства ставились более общие задачи, нежели непосредственное решение проблемы Гельмгольца — Ли. Ниже мы излагаем систему аксиом, цель которых — дать ответ на сформулированный в начале статьи вопрос.

Мы рассматриваем далее только сепарабельное локально-компактное метрическое пространство M с внутренней метрикой ρ .

Обозначим через r(x) точную верхнюю границу всех чисел r>0 таких, что сфера $S(x,r)\equiv\{y\in M: \rho(xy)=r\}$ является компактным подмножеством. Пусть, далее, p(x) есть точная верхняя граница всех чисел p_x , отвечающих точке $x\in M$, таких, что если $y,z\in B(x,p_x)$, то y соединяется с z кратчайшей. Как известно,

функция p(x) либо для всех x принимает значение $+\infty$, либо она всюду конечна и непрерывна.

Сформулируем следующие две аксиомы:

- (A_1) Каждой точке $x \in M$ отвечает число d(x) > 0, обладающее свойством: если I(x) обозначает группу всех изометрий шара B(x,d(x)) на себя, то I(x) действует эффективно и транзитивно на каждой сфере S(x,r), где 0 < r < d(x) и $\lambda(x) = x$ для $\lambda \in I(x)$.
- (A2) Для каждой точки $x \in M$ существует число $\delta_x > 0$ такое, что $\delta_x < \min(d(x), r(x), p(x))$ и выполняются условия:
 - а) сфера S(x, r) связна для любого $r, 0 < r \le \delta_x$;
- б) существуют две различные точки a_r, b_r на каждой сфере $S(x, r), 0 < r \le \delta_x$, разделяющие S(x, r), т.е. $S(x, r) \setminus \{a_r, b_r\} = A_1 \cup A_2$, где $A_1 \cap A_2 = \phi, A_1, A_2$ непустые открытые в $S(x, r) \setminus \{a_r, b_r\}$ подмножества;
- в) для каждого $r, 0 < r \le \delta_x$, существует изометрия $\lambda \in I(x)$ такая, что $\lambda(a_r) \in A_1$ и $\lambda(b_r) \in A_2$ (либо $\lambda(a_r) \in A_2$, $\lambda(b_2) \in A_1$).

Заметим, что аксиома (A_2) является локальным вариантом аксиом Γ . Фрёйденталя (S) и (Z). При этом условие 6) имеет целью фиксировать размерность сфер, имея в виду одномерные сферы и, следовательно, двумерное пространство.

T е о р е м а 1. Пусть пространство M удовлетворяет аксиомам (A_1) и (A_2) . Тогда:

- (1) S(x, r), $0 < r \le \delta_x$, гомеоморфна одномерной евклидовой сфере S^1 ;
- (2) группа I(x) является компактной группой Ли размерности, равной единице, любая стационарная подгруппа которой компактна и нульмерна;
- (3) связная компонента единицы группы I(x) действует эффективно и транзитивно на $S(x,r),\ 0 < r \le \delta_x,\ u$ изоморфна группе Ли SO(2).

Доказательство теоремы 1 опирается на теорию порядков топологических пространств в точке (8). При этом устанавливается, что $\operatorname{ord}_p S(x,r)=2$, и тогда на основании теоремы 8'' из ((8), стр. 302) делается заключение о гомеоморфности S(x,r) евклидовой сфере S^1 . Остальное следует из теории групп Ли.

Теорема 2. Если пространство M удовлетворяет аксиомам (A_1) и (A_2) , то M является двумерным топологическим многообразием.

Для решения поставленной нами задачи потребуется еще три аксиомы.

- (A_3) Для каждой точки $x \in M$ шар B(x, d(x)) допускает вращение в смысле Буземана.
- (A_4) Для каждой точки $x \in M$ найдется точка $y \in M$ такая, что $\rho(xy) < \min(d(x), d(y), \delta_y)$.
- (A_5) Между любыми двумя кратчайшими, исходящими из произвольной точки $x \in M$, существует угол в смысле А.Д. Александрова, причем существуют по крайней мере две кратчайшие, исходящие из точки x, с ненулевым углом между ними.

Аксиомы (A_3) и (A_4) — это всего лишь усиление аксиомы (A_1) , причем (A_4) позволяет исключить из рассмотрения пространства с многогранными метриками, которые не являются элементарными.

Определение. Пространство M, удовлетворяющее аксиомам $(A_1)-(A_5)$, называется r-пространством.

Теорема 3. Пусть M есть r-пространство. Тогда для каждой точки $x \in M$ можно найти положительное число η_x , $0 < \eta_x \le \delta_x$, такое, что любая точка $y \in B(x, \eta_x)$ соединяется c x единственной кратчайшей.

Эта теорема является ключевой во всем нашем исследовании. Доказательство ее весьма сложно и занимает много места.

Следующая теорема дает ответ на вопрос, решаемый в этой заметке.

T е о р е м а 4. Пусть M — полное r-пространство. Тогда M — двумерное G-пространство Буземана, универсальное накрывающее для которого элементарно, T-е. является евклидовой плоскостью, плоскостью Лобачевского или сферой.

С π е π с π в π е. Полное r-пространство является одним из следующих пространств: сферой, проективной плоскостью, евклидовой плоскостью, цилиндром, тором, листом Мёбиуса, бутылкой Клейна или, наконец, локально-гиперболическим двумерным пространством, число которых бесконечно, но они описаны известным образом (7).

Замечание. Неполное *г*-пространство не является *G*-пространством Буземана. Более того, как показывает рассмотрение евклидовой плоскости с выколотой точкой, существует неполное *г*-пространство, универсальное накрывающее пространство для которого не изометрично элементарному.

В заключение хочу поблагодарить В.А. Залгаллера и В.Н. Берестовского за ценные замечания и помощь в работе.

Омский государственный университет

ЛИТЕРАТУРА

Поступило 4 VI 1979

¹ Г. Буземан, Геометрия геодезических, М., Физматгиз, 1962. ² Н. Freudenthal, Math. Zs., B. 63, 374 (1956). ³ Д. Гильберт, Основания геометрии. Приложение IV, М.-Л., 1948. ⁴ А. Kolmogoroff, Nachr.Ges.Wiss. Göttingen.Math.-Phys., K 1, B. 208 (1930). ⁵ Wang Hsien-Chung, Ann.Math., v. 55, 177 (1952). ⁶ J. Tits, Bull.Soc.Math.Belg., v. 5, 44 (1952). ⁷ Ф. Клейн, Неевклидова геометрия, М.-Л., ОНТИ, 1936, стр. 290. ⁸ К. Куратовский, Топология, т. 2, М., "Мир", 1969, стр. 279.

УДК 517.5

МАТЕМАТИКА

ДИНЬ ЗУНГ, Г.Г. МАГАРИЛ-ИЛЬЯЕВ

ЗАДАЧИ ТИПА БЕРНШТЕЙНА И ФАВАРА И СРЕДНЯЯ ϵ -РАЗМЕРНОСТЬ НЕКОТОРЫХ КЛАССОВ ФУНКЦИЙ

(Представлено академиком А.Н. Колмогоровым 10 V 1979)

1. Обозначения. Пусть $\mathbf{0} = (0, \ldots, 0), \ \mathbf{1} = (1, \ldots, 1), \ \underline{\infty} = (\infty, \ldots, \infty).$ Если $\mathbf{a} = (a_1, \ldots, a_n), \ \mathbf{b} = (b_1, \ldots, b_n), \ \text{то } \mathbf{a} \leqslant \mathbf{b}$ означает, что

$$a_k \le b_k, \quad k = 1, \ldots, n; \quad |\mathbf{a}|^{\mathbf{b}} = \prod_{1}^{n} |a_k|^{b_k}; \quad \frac{1}{\mathbf{a}} = \left(\frac{1}{a_1}, \ldots, \frac{1}{a_n}\right), \quad a_k \ne 0.$$

Далее $L_{\mathbf{p}}(\mathbf{R}^n)$, где $\mathbf{p} = (p_1, \ldots, p_n)$ и $1 \le \mathbf{p} \le \infty$, обозначает совокупность измеримых функций на \mathbf{R}^n , для которых конечна норма

$$\|x\|_{\mathbf{p}} = \left(\int_{-\infty}^{\infty} dt_1 \left(\int_{-\infty}^{\infty} dt_2 \ldots \left(\int_{-\infty}^{\infty} |x(t)|^{p_n} dt_n\right)^{p_{n-1}/p_n} \ldots\right)^{p_1/p_2}\right)^{1/p_1}.$$

Это банахово пространство, которое вкладывается в пространство обобщенных функций Φ' (см. (¹)). Для каждых $x \in \Phi'$ и $\underline{\alpha} \in \mathbb{R}^n$ определена лиувиллевская производная $\mathcal{D}^{\underline{\alpha}}x \in \Phi'$ функции x порядка $\underline{\alpha}$. Если $x \in \Phi'$, то Fx обозначает преобразование Фурье функции x, а supp Fx — носитель Fx.