Материалы международной конференции по алгебре, анализу и геометрии, посвященной юбилеям выдающихся профессоров Казанского университета, математиков Петра Алексеевича (1895-1944) и Александра Петровича (1926-1998) Широковых, и молодежной школы-конференции по алгебре, анализу, геометрии

МЕЖДУНАРОДНАЯ КОНФЕРЕНЦИЯ ПО АЛГЕБРЕ, АНАЛИЗУ И ГЕОМЕТРИИ

(26 июня – 2 июля 2016 г., Казань)

А. К. Гуц 153

МНОГОМЕРНОСТЬ ПРОСТРАНСТВА-ВРЕМЕНИ И ИНТУИЦИОНИСТСКАЯ ЛОГИКА

А. К. Гуц¹

Памяти А.П. Широкова, подтвердившего умение автора преподавать геометрию.

В современной теории пространства-времени и космологии широко используются многомерные (псевдо)римановы многообразия. При этом многомерие, т.е. размерность пространства-времени большая 4, как правило, постулируется, вводится априори и ее выбор определяется намерением получить желанные физические следствия. Например, 5-мерная теория Калуцы-Клейна обеспечивала одновременное описание гравитации и электромагнетизма.

Человеческая практика, физический опыт, однако, упорно указывают на 4 - мерность пространства-времени. Можно ли построить теорию, базирующуюся на постулате 4-мерности пространства-времени, и в рамках такой теории иметь возможность воспринимать при необходимости исходное 4-мерное пространство-время как (4+k)-мерное (псевдо)риманово многообразие, в котором разворачивается желанная физическая картина Реальности?

Ответ утвердительный, если базовую 4-мерную теорию пространства-времени излагать как теорию, основанную на интуиционистской логике [1]. Такой ответ неудивителен для тех, кто живет в Казани. Именно в Казани появилась воображаемая неевклидова геометрия Лобачевского, предваряющая теорию римановых многообразий, и воображаемая неаристотелева логика Васильева [2]. Н.А. Васильев отказался в свой логике и от закона исключенного третьего, что ведет к интуиционистской логике, и от закона (не)противоречия.

Переформулировка [1] общей теории относительности Эйнштейна (ОТО) в рам-ках синтетической геометрии Кока-Ловера [3] дает 4-мерное базовое пространствовремя. Если при этом принять, что скорость света $c=c_0+d$ и гравитационная постоянная Ньютона $G=G_0+\delta$, где c_0 , G_0 – классические их значения, а d, δ – так называемые инфинитозималы ($d^2=0$, $\delta^2=0$), то метрика g_{ik} (i, k=0, 1, 2, 3) пространствавремени, являющаяся решением уравнений Эйнштейна, будет зависить от этих инфинитозималов. При интерпретации такой «воображаемой» ОТО в топосе $\mathbf{Sets}^{\mathbf{Lop}}$ [1,4] метрика будет зависить от многомерного параметра a^A (A=1,..., k). Другими словами, появляется (4+k)-мерное пространство-время с метрикой

$$dS^{2} = h_{A}da^{A^{2}} + 2h_{iA}dx^{i}da^{A} + g_{ik}(x, a)dx^{i}dx^{k},$$

в которое вложено классическое 4-мерное пространство-время.

Литература

- [1] Гуц А. К. Элементы теории времени. М.: УРСС, 2012. 376 с.
- [2] Васильев Н. А. *Воображаемая логика. Избранные труды.* М.: Наука, 1989. 284 с.

 $^{^1}$ aguts@mail.ru, Омский государственный университет имени Ф.М. Достоевского

- [3] Kock A. Synthetic Differential Geometry. Cambridge University Press, 1981. 241 p.
- [4] Гуц А. К. Физика реальности. Омск: Изд-во КАН, 2012. 424 с.

О СУЩЕСТВОВАНИИ СИМПЛЕКТИЧЕСКОЙ СТРУКТУРЫ НА ШЕСТИМЕРНОМ \mathscr{G}_1 -МНОГООБРАЗИИ

Н. А. Даурцева¹

Пусть (M, g, J, ω) – 6-мерное почти эрмитово многообразие. Напомним, что в этом случае риманова метрика g инвариантна относительно почти комплексной структуры J:

$$g(J\cdot, J\cdot) = g(\cdot, \cdot),$$

а 2-форма ω однозначно определяется парой (g, J) по формуле

$$g(\cdot, \cdot) = \omega(\cdot, J \cdot) \tag{1}$$

Очевидно, что J положительно ассоциирована с 2-формой ω , т.е.

$$\omega(J, J) = \omega(J), \quad \omega(X, JX) > 0, \text{ для всех } X \neq 0$$
 (2)

Для почти комплексной структуры существуют и другие инвариантные относительно нее метрики g_J , каждая из которых, в паре с почти комплексной структурой J по формуле (1) определяет 2-форму ω_J , удовлетворяющую условиям (2).

В работе [2] было доказано, что на строго приближенно келеровом 6-многообразии (M,g,J) почти комплексная структура J не может быть согласована с симплектической формой, даже локально. Далее мы будем использовать обозначения принятые в [1] для классификации почти эрмитовых многообразий. А именно, \mathcal{K} обозначает класс келеровых многообразий, \mathcal{W}_1 – класс приближенно келеровых многообразий, \mathcal{W}_2 – класс почти келеровых, \mathcal{W}_3 – класс эрмитовых полу-келеровых многообразий и \mathcal{W}_4 – класс, содержащий локально конформно келеровы многообразия. В этих обозначениях результат [2] говорит о том, что если $(M,g,J) \in \mathcal{W}_1$ и $(M,g,J) \notin \mathcal{K}$, то $(M,g,J) \notin \mathcal{W}_2$ для любой римановой метрики g_J , инвариантной относительно J.

В докладе представлен более сильный результат.

Теорема. Если $(M, g, J) \in W_1 \oplus W_3 \oplus W_4$, и почти комплексная структура J не интегрируема, то для любой римановой метрики g_J , инвариантной относительно J, почти эрмитово многообразие $(M, g_J, J) \notin W_2$.

Работа поддержана грантом Президента РФ по поддержке научных школ, проект HШ-4382.2014.1

Литература

[1] Gray A., Hervella L. M. *The sixteen classes of almost Hermitian manifolds and their linear invariants*// Ann. Mat. Pura Appl. – 1980. –V. 123. –P. 35–58.

¹natali0112@ngs.ru, Кемеровский государственный университет