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which is differentiable in established range of variables M  and is not a hyper-transcendental function. 

We shall look for the first-order system of differential equations:

=  г  =  1 >2 - " - > и . (2 )

the solution of which satisfies the equation ( 1 ) in established range of variables M .

The variable <p in (2) is an argument of the designed differential analyzer. In is necessary to define the

functions f i .  After differentiation of equation (1 ) by parameter <p, we shall get:

(3)^  dxi dip 1 J
If the system (2) solution turns into identity the equation (1), then system (2) turns into identity 

the equation (3). Thus, the functions f i  definition can be based on analytical condition (1 ). This problem 

has a solution set, at that functions f i  in all cases depend on partial derivatives For analytical 

algorithm simplification let us concern the functions fi  are linear functions of mentioned above partial 

derivatives. This method of differential analyzers synthesis has an essential advantage: the argument ip, 

which is concerned to be a system parameter, can be any analytical function, what specifically lets realize 

the argument control, which is necessary for differential analyzer structure simplification.
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T H E  N A S H ’S O P T IM A L  C O N T R O L  OF F O R E ST  E C O S Y S T E M

A. K. Guts, L. A. Volodchenkova (Omsk, Russia)

In [1] was offered the next model 4-tier mosaic forest communities, characterized by productivity x 

and the soil fertility measure y:

dX  г  а  у

—  =  —a x  — x к  — x  m  — xa — w , 
a t

dV 3 4- w  4- ( \\ ^_  = - r y y  + - 5 - { w  +  { w q -  «;_)),

0  <  w -  <  wo <  ,

t e [0,71,

where m  is mosaic state, к  is interspecific and intraspecific competition, a is the anthropogenic impact, 

w  is soil moisture, p  is the measure of soil type and a,  7 , S >  0 are constants. Here к  =  0 ,a  =  0, г у  =  0  

are the boundaries of ecological stability of phytocenosis, and x =  0  is characteristic observed value of 

productivity in the absence of strong changes in external factors.

Position control {t^ =  m *(x ,y),v%  -  k * ( x , y ) , u 3  =  a *{ x , y ) , u \  =  w * ( x , y ) , u 5  =  P*(x, y) }  are said to 

constitute a Nash’s optimal control if

x) ’ 2̂> •**> ̂ z—1 * ̂ 2  > 1) i  — 1, ..., iV, JV =  5,

where
-boo

11^ 2, U j  , . . . ,  I t j y )  =  j  \Qi  ( x )  +  l i i )dt .

0
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Using [2 ] we found the N ash’s position optim al control

k* =  ^x 4, m*  =  ^ x 3, a* =  i x 2, w* =  ^ x ,  p * =  0

for our forest ecosystem model w ith

Qi =  a x 6  +  I  (^ x 8  +  x 6 +  x 4 +  x 2)  , Q 2  =  ocx6 +  i  (x 8  +  5 X6  +  x 4  4- x 2) ,

Q 3 =  a x 6 +  5  (x 8 +  x 6  +  \ x 4 +  x2) , Q 4, =  a x e +  i  (ж 8  +  x 6  +  x 4  +  | x 2) ,

Q 5 =  a x 6  4- 5  (x 8  +  x 6  +  x 4  +  x 2) .

For this optimal control productiv ity  x  asym ptotically tends to  zero with t  ->■  +00 , i.e. to  characteristic

observed value of productivity  in region, but dynamics of forest ecosystem is not asym ptotically stable. 

Since u l  >  0 for x >  0 , then  we have a  slowly degrading forest.
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The problem of program  m otion synthesis is generally solved w ithout uniqueness and control functions 

realizing the m otion and  minimizing a  functional m ust be obtained.

Differential equations of motions of m ulti-axis systems based on linear spepping m otors [1, 2] can be 

represented as

Xi =  p i ( x )  +  U i(x )b i(x ) ,  i  =  l , . . . , n .  ( 1 )

where x  =  ( x i , . . . ,  x n) are generalized device coordinates, u  =  ( щ , . . . ,  u n ) is the control vector.

The problem consists in forming controls и  =  (t, x )  such th a t и  6  R r and corresponding solution of

the system ( 1 ) satisfies the additional conditions

u k ( t , x )  =  0 , f e = l , . . . , r .  (2)

However, if x  =  x(f) is a solution satisfied the program  (2) then Wfc(t,x(t)) =  0, к  — 1 , . . .  , r.

W hence

~ u k ( t , x ( t ) )  = 0 ,  fc =  l , . . . , r

or

^ ( d u k { t ,x )  ( л  d u i k { t , x ) \

y y —a i T ^ ) + u'b' ^  + -~m—j  3 ° '

when x  satisfies (2 ).

The last expression is equivalent to  the condition

^  +  U ibi№ )  +  =  П к ^ ’ х ' Ш к Ъ  k  =  l , . . . , r ,  (3)

where R k is the arb itra ry  functions such th a t R k {t, x , 0 ) =  0 .

Therefore, the condition (3) is neccessary and sufficient for im plem enting the  program  (2 ) along solution 

x  =  x (t) of system (1). It can be used for calculating the neccessary controls щ ( t , x ) ,  i  =  1 , . . .  , r .

As r  < n , the system  (3) defines the  controls ambiguously, and the  functional m ust be minimized on 

free controls additionally. E.g. the control optim ization problem with constraints
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