Министерство образования Республики Беларусь Учреждение образования «Витебский государственный университет имени П.М. Машерова»

НАУКА— ОБРАЗОВАНИЮ, ПРОИЗВОДСТВУ, ЭКОНОМИКЕ

Материалы 72-й Региональной научно-практической конференции преподавателей, научных сотрудников и аспирантов

Витебск, 20 февраля 2020 г.

Витебск ВГУ имени П.М. Машерова 2020 следует, что множество всех разрешимых классов Фишера является полугруппой. В связи с этим актуальна задача построения полугруппы классов Фишера произвольных конечных групп. Решение ее – основная цель данной работы.

Материал и методы. В работе используется терминология теории групп и теории чисел, а также методы доказательств теории классов групп, в частности, методы разбиений множеств простых чисел.

Результаты и их обсуждение. Пусть **Р** – множество всех простых чисел и σ – разбиение множества **P**, т.е. σ ={ σ_i : $i \in I$ }, причем **P**= $\bigcup_{i=1}^{} \sigma_i$ и σ_i $\bigcap \sigma_j$ = \emptyset для всех $i \neq j$.

Определение. Пусть σ – разбиение множества **P**. Класс Фиттинга **F** назовем σ –*классом* Фишера, если из условия $G \in \mathbf{F}$, $K \triangleleft G$, $K \le H \le G$ и $H/K \in \mathbf{E} \sigma_i$ для некоторого $i \in I$ следует $H \in \mathbf{F}$.

Если $\sigma = \sigma^1$ — разбиение множества **P** на одноэлементные множества $\sigma^1 = \{\{p_1\}, \{p_2\}, \dots \{p_i\}, \dots\}$, то σ^1 —класс Фишера является классом Фишера, хотя обратное неверно для каждого разбиения $\sigma \neq \sigma^1$.

Основным результатом работы является следующая

Теорема. Пусть σ – разбиение множества **P**. Тогда справедливы следующие утверждения:

- 1) если \mathbf{F} и $\mathbf{H} \mathbf{\sigma}$ -классы Фишера, то их произведение является $\mathbf{\sigma}$ -классом Фишера;
- 2) множество всех σ -классов Фишера является полугруппой относительно операции умножения классов Фитинга.

Следствие (теорема Локетта [1]). *Произведение классов Фишера конечных разрешимых* групп является классом Фишера.

Заключение. В работе при помощи разбиения простых чисел описан метод построения полугруппы классов Фишера конечных групп. В частности, расширен известный результат Локетта о произведении классов Фишера конечных разрешимых групп на случай произвольных конечных групп.

- Lockett, F.P. On the theory of Fitting classes of finite sovable groups: Ph. D. thesis. University of Warwick / F.P. Lockett Warwick, 1971. – Pp. 245–246.
- 2. Doerk, K. Finite solvable groups / K. Doerk, T. Hawkes. Berlin–New York: Walter de Gruyter, 1992. 891 p.

ПОЛУГРУППЫ ЛИ И СИММЕТРИЧНОЕ АФФИННО УПОРЯДОЧЕННОЕ ОПТИМАЛЬНОЕ УПРАВЛЕНИЕ

А.К. Гуц¹, О.В. Храмцов² ¹Омск, ОмГУ имени Ф.М. Достоевского ²Витебск, ВГУ имени П.М. Машерова

Рассмотрим задачу оптимального уравления

$$\int_0^T s(x, u)dt \to inf \tag{1}$$

при условии, что

$$\begin{cases}
\dot{x} = f(x, u), \\
x(0) = a, \\
x(T) = b, \\
x \in \mathbb{R}^n, \quad u \in U \subset \mathbb{R}^r.
\end{cases} \tag{2}$$

Цель работы: построение множества достижимости G(x(T,u)), $u \in U$ для вектора состояния динамической системы (2) на языке теории полугрупп групп Ли.

Материал и методы. Используется теория и методы полугрупп на группах Ли. Задача оптимального управления (1), (2) сводится к задаче задания семества выпуклых касательных конусов на некотором гладком многообразии.

Известно, что задача оптимального управления (1), (2) в случае, когда функции s, f линейны относительно u, т.е. s(x, u) = S(x) + Au + a, f(x, u) = F(x) + Bu + b и множество U является выпуклым многогранником (или выпуклым компактом), сводится к следующей:

$$J[x(\cdot)] = \int_{x(\cdot)} \omega \to inf \tag{3}$$

при условии, что

$$\dot{x} \in K_{x(t)}, \quad t \in [0,1], \tag{4}$$

$$x(0) = a, \quad x(1) = b,$$
 (5)

где ω — дифференциальная 1-форма на n-мерном гладком многообразии $X \approx \mathbb{R}^n$, K_x выпуклый конус в каждой точке $x \in X$ и лежащий в касательном пространстве $T_x X$. Иначе говоря, управление $u \in U$ в виде (1), (2) сводится к управлению в форме задания семейства выпуклых конусов $K = \{K_x \subset T_x X : x \in X\}$.

Результаты и их обсуждение. Поставленная задача решается в предположении о наличии симметрии, которой подчиняется динамическая система (2), или управление в форме (4). Это позволяет свести решаемые задачи к теории полугрупп Ли групп Ли. Более того, мы получаем возможность использовать теорию лоренцевых многобразий с группами движений, классификация которых дана в [1].

Группа Ли G действует на многообразии X, если каждому $g \in G$ соответствует диффеоморфизм $\alpha(g): X \to X$ такой, что произведению gh отвечает композиция $\alpha(g) \circ \alpha(h)$ диффеоморфизмов, а единице $e \in G$ — тождественное отображение $id_X: X \to X$. Иначе говоря, действие G на X — это гомоморфизм $\alpha: G \to Diff(X)$.

Управление динамической системой (3)–(5) называется *симметричным* относительно действия группы G, если для любого $g \in G$

$$d\alpha(g)_x[K_x] = K_{[\alpha(g)](x)}$$
 и $\alpha^*(g)[\omega_{[\alpha(g)](x)}] = \omega_x$

Здесь $d\alpha(g)_x$ — дифференциал диффеоморфизма $\alpha(g)$ в точке $x \in X$, а $\alpha^*(g)_x: T^*_{\lceil \alpha(g) \rceil(x)} X \to T^*_x X$ соответствующий кодифференциал.

Пусть семейство подмножеств $P = \{P_x \subset X : x \in X\}$ задает порядок в X, т.е. выполняются условия: 1) $x \in P_x$; 2) если $y \in P_x$, то $P_y \subset P_x$; 3) если $y \neq x$, то $P_y \neq P_x$.

Мы будем предполагать далее, что $X = \mathbb{R}^n$ и группа Ли G действует просто транзитивно на X. Зафиксируем точку $a \in X$. Тогда имеем диффеоморфизм

$$\varphi: G \cong \mathbb{R}^n$$
, $\varphi(g) = [\alpha(g)](a)$, $\varphi(e) = [\alpha(e)](a) = a$.

Порядок P инвариантен относительно действия группы G (G-инвариантный порядок), если для любой точки $x \in X$ и $\alpha(g)[P_x] = P_{[\alpha(g)](x)}$ любого $g \in G$.

Нетрудно убедиться, что если P **G**-инвариантный порядок на X, то $S = \varphi^{-1}(P_a)$ – подполугруппа группы G.

Kасательный объект к S — это множество вида $L(S)=\{\xi\in al(G): \xi=\lim_{n\to\infty}n\xi_n\exp\xi_n\in S\}$, где al(G) — алгебра Ли группы Ли G.

Контингенция множества P_x в точке x — это совокупность векторов, касательных в точке x к гладким кривым, исходящим из точки x и лежащим в P_x . Для контингенции используем обозначение: cont(P,x). Известно, что $K_x = cont(P,x)$ — замкнутый выпуклый конус, лежащий в $T_x X$. Ясно,

$$d\varphi_s[L(S)] = K_a \ u \ d\varphi_g[d(l_g)_s[L(S)]] = d\alpha(g)_a[K_a] = K_{x}, \ x = \alpha(g)(a),$$

где $l_a: G \to G$ левый сдвиг на g.

Известно, что если подполугруппа S порождает G, то $L(S) = \{\xi \in al(G) : \exp(R^+)\xi \subseteq \overline{S}\}$, т.е. $\exp[L(S)] \subseteq \overline{S}$.

Будем использовать семейство $K(P) = \{K_x : x \in X\}, K_x = cont(P, x)$ в качестве управления для динамической системы (3)–(4).

Управление K(P) называется *упорядоченным*, если P задает порядок на многообразии X.

Предложение 1. Если порядок **P** инвариантен относительно группы **G**, то очевидно, что K(P)-управляемая система симметрична относительно действия группы **G**.

Предложение 2. Если порядок P, $P_a \neq \emptyset$, инвариантен относительно группы G, то K(P)-управляемая система (3)–(5) не выходит за пределы множества $\overline{P_a}$. Вне $\overline{P_a}$ лежат недостижимые точки.

Пусть действие группы Ли G на $X=\mathbb{R}^n$ является $a\phi\phi$ инным, т.е. $\alpha:G\to Aff(\mathbb{R}^n)$. Просто транзитивное аффинное действие α порождает полную левоинвариантную аффинную структуру A на самой группе Ли G. Действительно, диффеоморфизм

$$\phi \colon G \cong \mathbb{R}^{n}, \quad \varphi(g) = [\alpha(g)](0, \dots, 0) = (x^{1}, \dots, x^{n}) = x \in \mathbb{R}^{n},$$

$$\phi(e) = a = (0, \dots, 0)$$

можно использовать для задания глобальной аффинной системы координат на G, в которых левые сдвиги $l_h: G \to G$, $l_h(g) = hg$ имеет вид

$$[l_h]^k(g) = [l_h]^k(\phi^{-1}(x^1,...,x^n)) = \sum_{i=1}^n L_i^k x^i + L^i \quad (k = 1,...,n).$$

Предположим, что порядок P в \mathbb{R}^n является *коническим*, т.е. состоит из замкнутых выпуклых конусов. Тогда можно отождествить $P_x = K_x$.

Теорема. Если порядок **P** инвариантен относительно просто транзитивного аффинного действия группы Ли **G**, то K(P)-управляемая система (3)–(5) не выходит за пределы конуса K_{σ} .

Заключение. Таким образом, ответы на поставленные в начале статьи вопросы частично находятся, если дано описание всех конусов K_a в \mathbb{R}^n , за которые не выходит K(P)-управляемая система, эволюционирующая в \mathbb{R}^n . Данная задача сводится к задаче классификации и описанию всех G-инвариантных конических порядков в пространстве \mathbb{R}^n относительно разрешимых односвязных \mathbb{R}^n . В случае 3-мерных групп Ли такое описание было найдено в [2,3]. Результат, касающийся n-мерных групп Ли $(n \ge 4)$ не может быть приведен здесь из-за недостатка места.

- 1. Петров А.З. Новые методы в общей теории относительности. М.: Наука, 1966. 496 с. 2. Аблиахимова Н.Р. Гуит А.У. Гамболго И.А.
- 2. Абдрахимова Н.Р., Гуц А.К., Грибанова И.А. Описание аффинных конических порядков на трехмерных разрешимых группах Ли // Ученый совет мат. фак. ОмГУ. Деп. в ВИНИТИ 15.06.94, N 1467–B94. 35 с.
- 3. Гуц А.К. Симметричное управление, не выводящее динамическую систему за пределы конуса // Математические структуры и моделирование. 2002. Вып.9. С. 5–9.

ПРИМЕНЕНИЕ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ ДЛЯ КОМПЛЕКСНОГО МОНИТОРИНГА ФИЗКУЛЬТУРНО-ОЗДОРОВИТЕЛЬНЫХ ЗАНЯТИЙ И РЕЖИМА ПИТАНИЯ ШКОЛЬНИКОВ

С.А. Ермоченко, Д.Э. Шкирьянов Витебск, ВГУ имени П.М. Машерова

В рамках данного исследования разрабатывался комплекс программного обеспечения, который позволяет проводить мониторинг физкультурно-оздоровительных занятий и режима питания школьников. Данное программное обеспечение внедрено в практику работы детского реабилитационно-оздоровительного центра «Жемчужина» и ориентировано на школьников среднего школьного возраста, которые имеют риск набора лишнего веса, или уже имеют лишний вес.

В настоящее время существует достаточно большое количество приложений, которые позволяют отслеживать физическую активность и режим питания. Но все они имеют ряд недостатков. В рамках данного исследования разрабатывался комплекс программного обеспечения,