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GROUPS OF ORDER AUTOMORPHISMS OF AFFINE SPACE
AND THEIR DISCONTINUOUS EXTENSIONS
UDC 513.82

A. K. GUTS

We consider an n-dimensional affine space A™, n > 2, in which there is specified
a partial preorder P, invariant under all parallel translations; that is, a family of sets
P = {P,:z € A"} satisfying the following conditions: 1) z € Fy; 2) if y € P,, then
P, C P;; and 3) if ¢ is a translation, then t(Py) = Py(y) for any z € A™.

A bijection f: A" — A" is called an order automorphism, or a P-automorphism, if
f(P;) = Py(y) for every point z € A™. We denote the group of all P-automorphisms by
Aut(P).

We pose the problem of describing the group Aut(P). The foundation for such research
was laid by some papers of A. D. Aleksandrov (see the survey [1]). In this note we
calculate the group Aut(P) for a disconnected preorder satisfying some additional axioms,
and we give a classification of homogeneous disconnected preorders. The results we obtain
extend the research begun in [2] and [3]. We also show how it is possible to extend the
group Aut(P) to discontinuous bijections.

1. We fix a point e for the whole article, and write P instead of P.. If M in some set
in A" containing e, then M, denotes the set obtained from M by means of a translation
t such that t(e) = . We denote by int 4, A,0A and con A respectively the interior,
closure, boundary and convex hull of the set A. Also, L(z,y) denotes the ray with origin
r passing through y, where y # .

We say that the preorder P = {P,:z € A"} is connected if z € P;\{z}. Otherwise the
preorder P is disconnected. The preorder P is closed (open) if P is closed (respectively,
P\{e} is open).

DEFINITION 1. A connected preorder P is said to be K-ruled, where K is a convex
cone with e, if for any z € P we have K, C P. A disconnected preorder P is K. -ruled if
K, C P for any z € P\{e}.

If the realtion y & P, is written in the form z < y, then < is a partial preorder in A",

DEFINITION 2. A displacement dg; (or dgr), where E is a hyperplane and [ is a
vector (respectively, L is a ray) not parallel to E, is a homeomorphism of A™ onto itself
that satisfies the following conditions:

a) dg; (dg1) is a translation on every hyperplane E,.

b) dgi (der) takes segments (rays) equal and parallel to [ (L) into segments (rays) of
the same kind.

DEFINITION 3. A guasicylinder Q(E,l) is a set M C A™ that satisfies the following
conditions:

a) There are hyperplanes ..., E_1, Ep, E,... parallel to E, where E;;; is obtained
from E; by a translation by the vector [,

(1) M =M U (M N Ey)),
where every M; is a cylinder formed by open segments equal to ( (as vectors) with ends
on E; and E;,; (we do not exclude the case where some or even all the M; are empty).
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b) M does not admit representations (1) with the same hyperplane E and vector I’
parallel to ! but larger than 1.

The definition of a quasicylinder Q(E, L), where L is a ray, is similar.

DEFINITION 4. A preorder P is said to be affine (continuously affine) if Aut(P) C
Aff(A™); that is, it consists of affine transformations (respectively, every continuous P-
automorphism is an affine transformation).

We introduce the following weak Einstein aziom:

AE,. For anyz,y € A", if y € Py, then P, NP, is bounded, where P, = {y:y < z}.

THEOREM 1. Let P = {P;:z € A"} be a preorder in A™, n > 2, that satisfies the
aziom AE,, and is K-ruled, where int K # &. Then either P is a continuously affine
order, or it s quasicylindric. If P is the quasicylinder Q(E1,l),...,Q(Eply), then any
continuous P-automorphism f has the form

(2) f=Jfoodio - ody,

where fo is an affine transformation, and d; is the displacement dg,;,. Any displacements
d; are admissible, and the various d; commute (we allow some of the l; to be rays L;).

COROLLARY 1. If P is an open or closed preorder in A", n > 2, satisfying the
conditions of Theorem 1, then either P is an affine order or it is quastcylindric. If P is
the quasicylinder Q(E1,l1),...,Q(Ep,l,), then any P-automorphism f has the form (2).

2. Let P be a preorder in A™, n > 2. Then the cone
expP = U L(e,x)

zeP
with vertex e is said to be exterior.
DEFINITION 5. A preorder P is said to be mazimally ruled if it is ext P-ruled. A
connected maximally ruled preorder is closed and conical. However, a disconnected
maximally ruled preorder can be very arbitrary.

THEOREM 2. If P 15 a mazimally ruled disconnected preorder with interior points,

then
expP= () Qz, Q.= P\{z},
€€Q:
and consequently Aut(P) C Aut(ext P).

We introduce the following strong Einstein aziom:

AE,. The exterior cone ext P does not contain straight lines; and the homogeneity
azriom:

AH. The stabilizer Aut(P), of the point e acts transitively on 9Q,.

An order that satisfies AH is said to be homogeneous.

THEOREM 3. Let P be a disconnected nontrivial homogeneous K -ruled (int K # @)
order in A™, n > 2, satisfying the aziom AE,. Then the follounng assertions are true:

1) P s affine, and P 1s a mazimally ruled affine order.

2) Aziom AE, holds.

3) ext P is a conver cone that admits an affine group G of ext P-automorphisms,
acting transitively on int(ext P).

4) The set Q. 1s convez and is isolated from the cone ext P by hyperplanes that cut
off a finite volume from ext P.

5) Aut(P), is a unimodular subgroup of G.

Thus, it is possible to classify homogeneous disconnected K-ruled orders that satisfy
AEy. This reduces to a classification of homogeneous convex cones in A”, n > 2, and
the calculation of the group G. Then 8Q, is an orbit of the group Aut(P). C G. The
group G was calculated by Vinberg in [4], Chapter III, §2, Proposition 1, and in (5].
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3. Discontinuous extensions of the group Aut(P). Let 2 be an udeal of subsets
of A™; that is, the following two conditions hold: 1) if A,B € 2, then AU B € ¥; 2) if
ACBand B2, then A€ 2.

We shall say that A is ™A-equivalent to B if the symmetric difference AAB € 2. This
is an equivalence relation that splits the set of subsets of A™ into disjoint classes of
2A-equivalent sets. We denote the class with representative A by [A]. We shall write
[A] < [B] if and only if B\A € 2.

DEFINITION 6. The family of classes I1 = {n,:z € A"}, where 7, is the class of
2A-equivalent sets associated with the point z, specifies an A-preorder on A™ if [{y: 7, <
Ty} = 7y for all z € A™\ag, where Ag € A is a fixed set.

DEFINITION 7. A bijection f: A® — A™ is called an A-order automorphism if f(A) C
A, f71(A) C A and

f(Sz)ASpz)y €A (or [f(S2)] = [Sfw)))
for z ?’Af, where Ay € A, Ag C Ay N f(Ay) and
Sz = {y € A"\ Ag: 7z < my}.

The set Aut(IT,A) of all A-order automorphisms forms a group with composition as the
group operation and the inverse bijection as inverse element.

If P = {P,:x € A"} is a preorder in A", then it specifies an A-preorder II, =
{[P:):z € A™\Ap}. 1t is therefore natural to call the group Aut(Il,, ) a discontinuous
extension of the group of order automorphisms Aut(P).

Let Az denote the ideal of sets having zero Lebesgue measure.

THEOREM 4. Let C = {C,:x € A"} be an order in A™, n > 3, such that in rectan-
gular Cartesian coordinates To,Z1,...,Tpn—1

n—1
(3) C, = {y € A™: (yo — 1o)? — E(yi — ;)% > 0and yo > zo} .

=1

If f: A™ — A™ is a bijection of class W,1(A™) satisfying the equality
n—1 n—1
(Yo — 20)2 = 3 (i — z:)? = [fo(w) — fo@)]* = D_[fily) - fi(=)]?
1=1 =1

for almost all y € Cy, where x € A™\ Ag, Ao € UL, then f is an AL -order automorphism
that coincides almost everywhere with an inhomogeneous Lorentz transformation.

Physical interpretation of Theorem 4. We show that with the extension Aut(Il¢, L)
there is associated a generalized principle of relativity, which substantially enriches the
range of phenomena that fall under the action of the (special) principle of relativity.
Later, instead of affine space we consider the four-dimensional arithmetic space R*.

As we know, the principle of relativity asserts that the laws governing natural phenom-
ena are independent of the state of motion of the frame of reference so long as this motion
is inertial, that is, a rectilinear uniform mechanical displacement in space. However, we
can ask: is it not possible to extend the principle of relativity to motions that are not
mechanical? By such motions we understand for the time being some forms of motion
of matter other than a simple mechanical displacement. In this case, we must think of
the “moving” frame of reference as the original “rest” frame of reference in which are
“included” some forces whose nature we do not yet specify. According to this scheme
Einstein in his time attempted to extend the theory of relativity to a gravitational field
by replacing the field itself by nonlinear transformations of the coordinates ([6], §1).
The possibility of introducing physical fields into the theory, associating discontinuous
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transformations with them, remained unused. An inertial mechanical motion is a diffeo-
morphism in Aut(C) (we omit such maps in future). Therefore, Theorem 4 suggests the
following way of extending the Poincaré group A.

DEFINITION 8. Let A be a group of bijections f:R* — R* of class W}
that almost everywhere on R*

3 .
Ofi Ofr
(4) Z Nik n " Nnm,
o oz" Ox

(R*) such

where 7, = diag{1, -1, -1, —1}, and 3f;/0z" is a generalized derivative.

It is not difficult to see that A C A. In K, as well as Lorentz transformations there occur
discontinuous bijections that differ from Lorentz transformations on a set of measure zero
(7).

In this case the generalized principle of relativity means that the equations describing
physical laws must be invariant with respect to the group A. Invariance of differential
equations with respect to the group A must be understood in the generalized sense; that
is, the integral identities by means of which generalized boundary-value problems are
usually stated in mathematical physics must be invariant. For example, in the case of
the Klein-Gordon equation

3

Nik57ax M ¥=0

o Jridx

we consider the identity
3
Y Jp 2 4
wosoE d*z =0,
/R:; iéo"’“azzazk’ww z=0

where ¢ € W3 (R*), ¢ € V%%(Q), (1 ¢ R* is an arbitrary bounded domain, and the
integral is understood in Lebesgue’s sense.

What new information can be given by the introduction of “spoiled” Lorentz transfor-
mations? We consider a bijection f € A\A which is equivalent to the Lorentz transforma-
tion f. We assume that f differs from f only on a two-dimensional plane o that passes
through the time-like line A. It is quite possible that f()) lies in the plane f(o), but is
a space-like line. Thus, if in the “rest” frame of reference we “include the field” corre-
sponding to the bijection f, then a conversion of an ordinary sublight velocity particle
(tardyon) into a superlight velocity particle (tachyon) is observed. Here there is nothing
unexpected, since in strong external fields ordinary particles are capable of revealing
tachyon properties (see the survey [8], §3). What is important is that the kinematic de-
scription of tachyon interactions is possible in the language of discontinuous extensions
of groups of order automorphisms.

There is a surprising consequence of the generalized principle of relativity. If A is a
line in a 3-plane ¥, then we can choose f € A\A so that f()) is a set that is dense in the
3-plane f(X). Consequently, the 3-trajectory of a particle with world line A under the
action of the “field” f is scattered over some spatial 2-plane; that is, it ceases to exist as
a classical 3-trajectory of the particle. The inverse process is possible— “collecting” or
“birth” of a particle from the space under “inclusion of the field” f—! € A\A.

Therefore, we should not reduce the generalized principle of relativity merely to the
description of interactions involving tachyons. It rather reflects the manifestation of
properties of moving matter that are qualitatively different from those that are inherent
in simple mechanical displacements.
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