

Общероссийский математический портал

А. К. Гуц, Полугруппы и их автоморфизмы основной аффинной группы Ли, Cub. матем. журн., 1992, том 33, номер 4, 59–64

https://www.mathnet.ru/smj3244

Использование Общероссийского математического портала Math-Net.Ru подразумевает, что вы прочитали и согласны с пользовательским соглашением

https://www.mathnet.ru/rus/agreement

Параметры загрузки:

IP: 80.249.207.97

15 апреля 2025 г., 18:54:03

УДК 519.46

А. К. ГУП

ПОЛУГРУППЫ И ИХ АВТОМОРФИЗМЫ ОСНОВНОЙ АФФИННОЙ ГРУППЫ ЛИ

В последние годы интенсивно развивается теория подполугрупи групп Ли. Особый интерес вызывает задача вычисления автоморфизмов связных подполугрупп. Для абелевой группы Ли эта задача была полностью решена А. Д. Александровым [1]. Однако для некоммутативных групп Ли пока не удалось получить достаточно серьезных результатов в решении указанной проблемы. Исключением являются основная аффинная группа Ли [2, 3] и трехмерные группы Ли [4].

В этой статье найдены автоморфизмы связных подполугрупи с квазиконтингенцией вида $L \times K$ (см. определение ниже) в случае основной аффинной группы Ли. Тем самым задача вычисления автоморфизмов подполугрупп основной аффинной группы Ли полностью решена.

Основная аффинная группа Ли — это вещественная связная односвязная группа Ли, алгебра Ли которой в некотором базисе X_1, \ldots, X_n задается ненулевыми коммутационными соотношениями

$$[X_n, X_i] = X_i \quad (i = 1, ..., n-1).$$

Впервые полугруппы и их автоморфизмы основной аффинной группы Ли были исследованы в статье [2] и более подробно—в работах [3—6]. При этом использовался геометрический язык, а вместо полугрупп изучались порождаемые ими частичные порядки. Большое значение в выяснении роли основной аффинной группы Ли в теории лиевых полугрупп сыграла статья [7]. Было показано, что данная группа занимает особое положение среди упорядоченных групп Ли. Это наблюдение затем подтвердилось в исследованиях [8, 9].

Важно отметить, что 4-мерная основная аффинная группа Ли является транзитивной группой изометрий стационарной вселенной де Ситтера, которая рассматривалась Хойлом и Нарликаром как альтернатива

теории Большого Взрыва в космологии.

Пусть G — связная группа Ли и $P \subset G$ — полугруппа, содержащая единицу e. Примем по определению $P_x \equiv x \cdot P$. Биекцию $f \colon G \to G$ такую, что f(e) = e и $f(P_x) = P_{f(x)}$ для любого элемента $x \in G$, будем называть P-автоморфизмом. Группу всех P-автоморфизмов обозначим через $\operatorname{Aut}(P)$.

Если N — однопараметрическая подгруппа, то множество $N_x \equiv x \cdot N$, где x — произвольный элемент, назовем прямой, проходящей через точку x. Луч, исходящий из точки x,— это множество вида $L_x \equiv x \cdot L$, где L — некоторая однопараметрическая полугруппа, содержащая единицу.

Kвазиаффинным преобразованием называется гомеоморфизм $f\colon G o$

 \rightarrow G, который любую прямую отображает на прямую.

Множество вида $E_x \equiv x \cdot E$, где E - k-мерная подгруппа, назовем k-мерной плоскостью. Конус K_x с вершиной x — это объединение лучей, исходящих из точки x.

Если $A \subset G$ — множество, то через \overline{A} , int A и ∂A соответственно обо-

значаются замыкание, внутренность и граница множества А.

Определение 1. \hat{K} вазиконтингенцией, или q-контингенцией, множества $A \subseteq G$ в точке a называется конус, образованный всевозможными пределами лучей, исходящих из a и проходящих через $x \in G$, $x \neq a$, при стремлении x к a. Если точка a не является предельной для A, то по определению будем считать, что квазиконтингенция A в точке a— это $\{a\}$.

Обозначим квазиконтингенцию через qc(A, a). Нетрудно проверить, что q-контингенция является замкнутым конусом и $qc(A, a) = qc(\bar{A}, a)$.

Будем далее через H^n обозначать n-мерную связную односвязную

основную аффинную группу Ли.

Пусть L — луч с началом e, K — конус с вершиной e, причем L, K не лежат в одной гиперплоскости и $L \cap K = \{e\}$. Полагаем

$$L\times K=\bigcup_{x\in A}L\left(e,\,x\right) ,$$

где $A=\bigcup\limits_{x\in K}L_x$ и $L(e,\,x)$ — это луч, исходящий из точки e и проходящий через $x,\,x\neq e$. Множество $L\times K$ является конусом с вершиной e, причем $L\times K$ — полугруппа, если таковой был конус K.

Пусть $P \subset H^n$ — полугруппа, содержащая единицу. Если $qc(P, e) \neq L \times K$, то группа Aut(P) вычислена в [3, теорема 7]. Ниже мы опи-

шем $\operatorname{Aut}(P)$ для случая $\operatorname{qc}(P, e) = L \times K$.

Если $M \subset H^n$ — подмножество, содержащее единицу, то по определению полагаем $M_x \equiv x \cdot M$, где $x \in H^n$. Получается семейство подмножеств $\mathscr{M} = \{M_x: x \in H^n\}$. Говорим, что семейство \mathscr{M} сохраняется при отображении $f \colon H^n \to H^n$, если $f(M_x) = M_{f(x)}$ для любого $x \in H^n$.

Пусть E-k-мерная подгруппа, $1 \le k \le n-1$, лежащая в абелевой подгруппе группы H^n . Тогда любое множество $E_x = x \cdot E$, где $x \in H^n$, называется k-мерной орисферой. При этом одномерную орисферу назы-

ваем орициклом.

Пусть L — луч с началом e, E — гиперплоскость, содержащая единицу e, и $L \cap E = \{e\}$. Предположим, что либо N — орицикл, где N — прямая, содержащая L, либо E — гиперорисфера. Обозначим через λ подмножество полугруппы L, гомеоморфное отрезку [0, 1] вещественных чисел, причем образом 0 является единица e. Полагаем, что $\lambda_x \equiv x \cdot \lambda$, где $x \in H^n$, и назовем далее множество λ_x отрезком.

Определение 2. Смещение d_{Eh} — это гомеоморфизм H^n , $n \ge 2$,

на себя такой, что

1) $d_{E\lambda}(e) = e$;

2) для любой $x \in H^n$ имеем $d_{E\lambda}(\lambda_x) = \lambda_{d_{E\lambda}(x)}, \ d_{E\lambda}(E_x) = E_{d_{E\lambda}(x)};$

3) $d_{E\lambda}|_E = \mathrm{id}_E$, т. е. ограничение $d_{E\lambda}$ на E является тождественным отображением.

Пусть $\partial \lambda = \{e, a\}$. Множество вида $x \cdot (\lambda \setminus \{e, a\})$ назовем открытым

отрезком с концами х, х а.

Определение 3. *Квазицилиндр* $Q(E, \lambda)$ — это подмножество $M \subset H^n$, удовлетворяющее условиям:

1) M представимо в виде

$$M = \bigcup_{n} (M_n \cup (M \cap E_n)), \tag{1}$$

где $E_n = a^n \cdot E$, n целое, а M_n — объединение открытых отрезков с концами на плоскостях E_n , E_{n+1} (априори не исключается, что некоторые M_n пусты);

(1) M не допускает представления (1) с той же плоскостью E и

отрезком $\lambda' \subseteq L$ таким, что $\lambda' \neq \lambda$, но $\lambda \subseteq \lambda'$.

При $\lambda = L$ имеем соответственно смещение d_{EL} и квазицилиндр Q(E, L). При $\lambda \neq L$ смещение $d_{E\lambda}$ и квазицилиндр $Q(E, \lambda)$ существуют

не для всяких E, λ . Например, они не существуют, когда N — орицикл (это видно из доказательства теоремы 1).

Пусть Р — полугруппа, содержащая единицу. Вводим следующую

локальную аксиому Эйнштейна:

(АЕ) Существует окрестность единицы е такая, что в ней пересе-

чение $\overline{P} \cap \overline{P}^{-1}$ не содержит точек, кроме e.

Теорема 1. Пусть P- полугруппа в H^n , содержащая единицу и удовлетворяющая аксиоме (AE). Предположим, что $\operatorname{qc}(P, e) = L \times K$, $L \subset N$, где N- орицикл, $K \neq L_1 \times K_1$, int $\operatorname{qc}(P, e) \neq \varnothing$. Тогда либо любой непрерывный P-автоморфизм является квазиаффинным, либо P=Q(E,L), $\tau.$ e.

$$P = \left(\bigcup_{x \in U \cap E} L_x \setminus \{x\} \right) \cup (P \cap E). \tag{2}$$

Здесь E— гиперплоскость, натянутая на K, и любой непрерывный P-автоморфизм имеет вид $f_0 \circ d_{\it EL}$, где f_0 — квазиаффинное преобразование такое, что $f_0(E) = E$, U— некоторое множество.

Доказательство. (А) Пусть $f: H^n \to H^n$ — непрерывный P-автоморфизм. Из [3, теорема 5] следует, что $C = \operatorname{qc}(P, e)$ — коническая полугруппа, а f - C-автоморфизм. Отсюда легко выводится, что

$$f(E_x) = E_{f(x)}, \quad f(N_x) = N_{f(x)}. \tag{3}$$

Но тогда $f|_E$: $E \to E$ сохраняет семейство $\{K_x: x \in H^n\}$. Согласно [3, теорема 1] $f|_E$ квазиаффинно. В соответствии с [3, теорема 4] имеем

$$f = g \circ \tilde{d}_{EL},\tag{4}$$

где g — квазиаффинное преобразование, $g|_E = f|_E$, $g|_N = \mathrm{id}_N$, а \widetilde{d}_{EL} — смещение. Необходимо теперь понять, насколько произвольным может быть данное смещение. Для этого следует учесть то обстоятельство, что f является P-автоморфизмом.

(Б) Вводим в группе H^n систему координат $x_1, \ldots, x_n, x_1 > -1/\sin \theta$,

 $0 < \theta < \pi$, так, что групповая операция $x \cdot y$ записывается в виде

$$(x \cdot y)_1 = [(x_1 \sin \theta + 1) (y_1 \sin \theta + 1) - 1] \cdot (\sin \theta)^{-1},$$

$$(x \cdot y)_2 = (x_1 \sin \theta + 1) (y_1 \cos \theta + y_2) + x_1 \cos \theta + x_2 - (x \cdot y)_1 \cdot \cos \theta,$$

$$(x \cdot y)_3 = (x_1 \sin \theta + 1) y_3 + x_3,$$

$$(x \cdot y)_n = (x_1 \sin \theta + 1) y_n + x_n,$$

где координаты x_1, x_3, \ldots, x_n меняются вдоль прямых, проходящих через e и лежащих в E, а x_2 меняется вдоль орицикла N. При этом $x_2 > 0$ на L и $e = (0, \ldots, 0)$.

Построенная в H^n система координат может быть названа аффинной. В ней любая прямая задается с помощью соотношений $x_i = a_i \cdot t + b_i$

 $(i=1, \ldots, n)$, где $t \in (\delta, +\infty)$, причем либо δ — число, либо $\delta = -\infty$. С учетом равенств (3) P-автоморфизм f в указанных координатах приобретает вид

$$f(x) = (\varphi_1(x_1, x_3, \ldots, x_n), \varphi(x_2), \varphi_2(x_1, x_3, \ldots, x_n), \ldots, \varphi_{n-1}(x_1, x_3, \ldots, x_n)).$$

Для установления вида функции $\varphi(x_2)$ воспользуемся методом А. Д. Александрова, изложенным в [1, пп. 6.3—6.6], где переменная x_2 обозначается как ξ .

В результате с точностью до квазиаффинного преобразования прямой N вида $x_2 \to k^{-1}x_2$ получаем

$$\varphi(x_2) = x_2 + \vartheta(x_2),$$

где ϑ — периодическая функция и ее периодами являются значения $\alpha \neq 0, \ \vartheta(\alpha) = 0, \ \alpha \in \partial(P_a \cap N), \quad a \in E$ — произвольная точка. Итак, имеем три возможности.

1. $\alpha \neq 0$ — периоды функции ϑ , не кратные никакому α_0 . Тогда функция ϑ оказывается просто постоянной, а точнее, нулевой, ибо $\vartheta(\alpha) = 0$. Следовательно, f вдоль N квазиаффинно, ибо $\varphi(x_2) \equiv x_2$.

2. Все значения $\alpha \neq 0$ кратны некоторому α_0 , где α_0 наименьшее с этим свойством. Тогда α_0 — период функции ϑ , которая в остальном

совершенно произвольна.

3. Единственно возможное значение — это $\alpha = 0$. Тогда ϕ — любой

гомеоморфизм.

В случае 1 смещение \tilde{d}_{EL} свелось к квазиаффинному преобразованию вдоль N, т. е. P-автоморфизм f является квазиаффинным. Причем P не может иметь вид (2), ибо полугруппа (2) допускает нетривиальное смещение d_{EL} .

В случае З f— произвольный гомеоморфизм вдоль N. Это означает, что P имеет вид (2). Действительно, граница ∂M множества $M = P_a \cap N$ всегда состоит из одной точки $\alpha = 0$. Следовательно, для любой $a \in E$ множество P_a содержит на прямой N весь луч L (либо $L \setminus \{e\}$) или $P_a \cap N = \emptyset$. Поэтому множество P пересекается с каждой прямой N_b , $b \in E$, но лучу L_b (или $L_b \setminus \{b\}$), если $P \cap N_b \neq \emptyset$. Но тогда P просто имеет вид (2).

Покажем, что случай 2 не выполняется. В самом деле, если случай 2 верен, то любое P_a , $a \in E$, пересекается с орициклом N только по отрезкам длины (в евклидовой метрике, которую можно ввести на орицикле N), кратной α_0 . Пусть $E_n = a_n \cdot E$, где $E_0 = E$, $a_n \in N$, n — целое число, и точка a_{n+1} отстоит от a_n вдоль N на расстоянии α_0 . Тогда при отображении f все E_n остаются на месте, ибо $\vartheta(n \cdot \alpha_0) = 0$. Поскольку ϑ может принимать произвольные значения на интервалах $(n \cdot \alpha_0, (n+1) \cdot \alpha_0)$, то отсюда следует, что каждая прямая N_b , $b \in E$, пересекается с P по отрезкам прямых с концами на плоскостях E_n . Равным образом $(H^n \setminus P) \cap N_b$ — это отрезки с концами на E_n . Однако точно такое же утверждение справедливо для множеств $P_a \cap N$, $(H^n \setminus P_a) \cap N$, где $a \in E$ — произвольная точка. Поскольку выбор точки $a \in E$ произволен и E не является орисферой, перемещая a в e с помощью левого сдвига, получим, что множества

$$a^{-1} \cdot (P_a \cap N) = P \cap (a^{-1} \cdot N), \quad a^{-1} \cdot [(H^n \backslash P_a) \cap N] = (H^n \backslash P) \cap (a^{-1} \cdot N)$$
 — это отрезки с концами, отнюдь не обязанными лежать на плоско-

стях E_n . Противоречие.

Итак, либо f квазиаффинно и P не имеет вид (2), либо P имеет вид (2) и тогда $f = f_0 \circ d_{EL}$.

Теорема 1 доказана.

Теорема 2. Пусть P- полугруппа в H^n , содержащая единицу и удовлетворяющая аксиоме (AE). Предположим, что $\operatorname{qc}(P,\,e)=L\times K$, $K\subset E$, где E- гиперорисфера, $K\neq L_1\times K_1$, $\operatorname{int}\operatorname{qc}(P,\,e)\neq\varnothing$. Тогда либо любой непрерывный P-автоморфизм является квазиаффинным, либо P есть квазицилиндр $Q(E,\,\lambda)$, причем случай $\lambda=L$ не исключается, а $f=f_0\circ d_{\operatorname{Eh}}$, где f_0- квазиаффинное преобразование.

Доказательство. Повторяя п. (А) доказательства теоремы 1,

получим, что f имеет вид (4) и справедливы равенства (3).

Пусть $h = g^{-1} \circ f$, т. е. $h = \tilde{d}_{EL}$. Для уточнения вида $h|_N$ необходимо учесть, что f - P-автоморфизм. Легко проверить, что h отображает полугруппу P на полугруппу h(P), т. е. h отображает левоинвариантное семейство $\{P_x: x \in H^n\}$ на левоинвариантное семейство $\{h(P_x): x \in H^n\}$. Это следует из того, что на H^n можно ввести координаты $u_1, \ldots, u_n, u_1 > 0$, в которых групповая операция будет вида

$$a \cdot b = (a_1 \cdot b_1, a_1b_2 + a_2, \dots, a_1b_n + a_n), e = (1, 0, \dots, 0),$$

[2], а квазиаффинное преобразование в этих координатах задается обычными линейными выражениями. Более того, каждая прямая задается соотношениями вида $k_i t + \mu_i$ (i = 1, ..., n), t— параметр.

 A_{CHO} , ato $h(N_x) = N_{h(x)}$, $h(E_x) = E_{h(x)}$, $h|_E = \mathrm{id}_E$, h(e) = e.

Пусть $M_a = N_a \cap P$, $M'_a = N_a \cap h(P)$, где $a \in E$. Так как h— гомеоморфизм, то топологически множества M_a и $M'_a = h(M_a)$ устроены одинаково.

Введем N_a на левоинвариантную метрику ρ , индуцированную мет-

рикой Лобачевского [2, 3]:

$$ds^2 = u_1^{-2} \cdot \sum_{i=1}^n du_i^2.$$

Точка из ∂M_a , ближайшая к E относительно метрики ρ , переходит при отображении h в ближайшую к E точку из $\partial M_a'$, и, вообще, $\rho(b_1, E) < \rho(b_2, E)$, где $b_i \in \partial M_a$ (i=1, 2) влечет $\rho(h(b_1), E) < \rho(h(b_2), E)$. Пусть $\alpha(b_a) = E_{b_a} \cap N$, где $b_a \in \partial M_a$. Тогда $h(\alpha(b_a)) = \alpha(h(b_a))$. Положим $A = \{\alpha(b_a): a \in E\}, A' = \{h(\alpha(b_a)): a \in E\},$ и элементы множеств A и A' обозначим соответственно через α , β , ... и α' , β' , ..., где $\alpha' = h(\alpha)$, $\beta' = h(\beta)$ и т. д. B силу изложенного из

 $\rho(\alpha, E) < \rho(\beta, E)$ следует $\rho(\alpha', E) < \rho(\beta', E)$.

Если A содержит только один элемент $\alpha = e$, то, очевидно, P = Q(E, L), а h — произвольное смещение d_{EL} . Это доказывается так же, как случай 3 в теореме 1 (см. п. (Б)). Значит, $f = f_0 \circ d_{EL}$. Пусть A содержит более одного элемента. Возьмем $\alpha \neq e$, $\alpha \in A$, $\alpha = E_b \cap N$, $b \in \partial M_a$, и предположим, что b — ближайшая к E точка из ∂M_a . Тогда $b^2 \in b \cdot \partial M_a = b \cdot \partial (N_a \cap P) = \partial (N_{ba} \cap P_b)$ — также ближайшая к E точка из $\partial (N_{ba} \cap P_b)$. Вообще, точка b^2 по отношению к E_b играет ту же роль, что b по отношению к E. Пусть $b = E_{b^2} \cap N$. Поскольку при левом сдвиге, переводящем b в a, каждая орисфера E_x остается на месте, а семейство $\{N_x : x \in H^n\}$ сохраняется, то $\rho(e, \beta) = 2\rho(e, \alpha)$. Отображение b сохраняет данную конструкцию, и если a' = h(a), b' = h(b), то аналогично предыдущему $a \in A$ 0, $a \in A$ 1. Повторяя рассуждения, $a \in A$ 2. В результате получим такую последовательность точек $a \in A$ 2. И т. д. В результате получим такую последовательность точек $a \in A$ 3 и т. д. В результате получим такую последовательность точек $a \in A$ 4, $a \in A$ 5, и при этом если $a' \in A$ 6, $a \in A$ 6, то говорим, что $a \in A$ 7. Побладает свойством $a \in A$ 8 и при отокорорим, что $a \in A$ 8. Последовательность имеется для каждой точки $a \in A$ 4. $a \in A$ 5 и говорим, что $a \in A$ 6 и при обладает свойством $a \in A$ 6 периодичности.

Возможны два случая: среди точек множества A либо существует α_0 , $\alpha_0 \neq e$, такая, что любое число $\rho(e, \alpha)$, $\alpha \in A$, кратно $\rho(e, \alpha_0)$, либо

не существует.

Первый случай означает, что существуют последовательность $\{(\alpha_0)_n\}\subset N$ и такое квазиаффинное преобразование $F\colon H^n\to H^n$, что $F|_E=\mathrm{id}_E$ и $F|_N$ — растяжение, для которых $(F^{-1}\circ h)\ ((\alpha_0)_n)=(\alpha_0)_n$ $(n=1,\ 2,\ \ldots)$ и $(F^{-1}\circ h)$ является произвольным гомеоморфизмом на каждом отрезке $((\alpha_0)_n,\ (\alpha_0)_{n+1})$ прямой N. Другими словами, $f=f_0\circ d_{E^\lambda}$, а $P=Q(E,\ \lambda)$.

Во втором случае можно утверждать, что $h|_N$, а следовательно, и $f|_N$ квазиаффинно. И поскольку и $f|_E$ квазиаффинно, получаем, что f квазиаффинно в H^n . Действительно, в данном случае существуют последовательности $\{\alpha_n\}$, $\{\beta_n\} \subset N$ такие, что $\rho(e, \alpha_1)$ не кратно $\rho(e, \beta_1)$, где α_1 , $\beta_1 \neq e$. Без ограничения общности считаем, что $\alpha_n = h(\alpha_n) = \alpha_n$ (в противном случае можно сделать растяжение вдоль прямой N). Пусть $\beta_n' = h(\beta_n)$. Предположим, что $\beta_n' \neq \beta_n$ и для определенности $\rho(e, \beta_1) < \rho(e, \beta_1')$ (если это не верно, то вместо h рассматриваем h^{-1}). Пусть $\rho(\beta_1, \beta_1') = \varepsilon > 0$. Так как $\rho(e, \alpha_1)$ не кратно $\rho(e, \beta_1)$, то найдут-

ся номера k и m такие, что

$$0 < \rho(e, \alpha_m) - \rho(e, \beta_h) < \varepsilon. \tag{5}$$

Поскольку h обладает свойством α - и β -периодичности, то $\rho(e,\beta_h)$ = $= \rho(e, \beta_k) + k \cdot \varepsilon$, $\rho(e, \alpha_m) = \rho(e, \alpha_m')$, и, следовательно, $\rho(e, \beta_k') > \rho(e, \alpha_m)$. Но это противоречит тому, что в силу гомеоморфности h из (5) должно следовать $\rho(e, \alpha_m) > \rho(e, \beta_k')$. Итак, $\beta_n' = \beta_n$. Но тогда в силу отсутствия кратности $\rho(e, \beta_1)$, $\rho(e, \alpha_1)$ и тождественности h на $\{\alpha_n\}$ и $\{\beta_n\}$ заключаем, что h тождественна на N, т. е. f квазиаффинно.

Теорема 2 доказана.

Теорема 3. Пусть $P - nолугруппа в <math>H^n$, содержащая единицу и удовлетворяющая аксиоме (AE). Предположим, что $\operatorname{qc}(P,\ e) = L \times K,$ $K \neq L_1 \times K_1, \ K \subseteq E$, причем гиперплоскость E не является гиперорисферой, а L не лежит на орицикле. Тогда любой непрерывный Р-автоморфизм является квазиаффинным.

Доказательство следует из [3, теорема 4, п. 7]. Замечание. Отказ от ограничения $K \neq L_1 \times K_1$ приведет к тому, что полугруппа P может оказаться квазицилиндром в нескольких «направлениях». Например, при $P = L \times L_1 \times K_1$ возможно, что P = Q(E, L)и $P = Q(E_1, L_1)$, где плоскость E_1 натянута на L и K_1 ; соответственно $f = f_0 \circ d_{EL} \circ d_{E_1 L_1}$. Устанавливается это методами, изложенными при доказательстве теорем 1 и 2.

ЛИТЕРАТУРА

- Александров А. Д. Отображения упорядоченных пространств // Тр. Мат. ин-та им. В. А. Стеклова АН СССР. 1972. Т. 128. С. 3—21.
- 2. Гуц А. К. Отображения упорядоченного пространства Лобачевского // Докл. АН СССР. 1974. Т. 215, № 1. С. 35—37.

 3. Гуц А. К. Отображения упорядоченного пространства Лобачевского // Сиб. мат. журн. 1986. Т. 27, № 3. С. 51—67.
- 4. Гуц А. К., Шаламова Н. Л. Порядковые автоморфизмы лиевых групп // X Всесоюз. симпоз. по теории групп: Тез. докл. Минск: Ин-т математики АН БССР, 1986. С. 71.
- Гуц А. К. Порядковые автоморфизмы основной аффинной группы Ли // XIX Всесоюз. алгебраическая конф.: Тез. сообщ. Львов: Ин-т прикладных проблем механики и математики АН УССР, 1987. С. 79—80.

- нани и математики АН УССР, 1987. С. 79—80.
 б. Левичев А. В. Левоинвариантный лоренцев порядок на основной аффинной группе Ли // Сиб. мат. журн. 1987. Т. 28, № 3. С. 152—156.
 7. Hofmann K. H., Lawson J. D. The local theory of semigroup in nilpotent Lie groups // Semigroup Forum. 1981. V. 23. P. 334—357.
 8. Hilgert J., Hofmann K. H. Lorentzian cones in real Lie algebras // Monatsh. Math. 1985. V. 100. P. 183—210.
 9. Левичев А. В. Алгебры Ли, допускающие эллиптические полуалгебры // Функцион, анализ и его прил. 1986. Т. 20, № 2. С. 72—73.

г. Омск

Статья поступила 16 октября 1990 г.